Python(TensorFlow)和MATLAB及Java光学像差导图

2024-09-04 18:28

本文主要是介绍Python(TensorFlow)和MATLAB及Java光学像差导图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 几何光线和波前像差计算
  2. 入瞳和出瞳及近轴光学计算波前像差
  3. 特征矩阵方法计算光谱反射率、透射率和吸光度
  4. 透镜像差和绘制三阶光线像差图和横向剪切干涉图
  5. 分析瞳孔平面焦平面和大气湍流建模
  6. 神经网络光学像差计算
  7. 透镜光线传播几何偏差计算
  8. 像差和像散
  9. 色差纠正对齐定位,计算多边形统计数据
  10. 分子图像分析
  11. 神经网络多尺度算法预测
  12. 聚焦光场矢量计算
  13. 非球面反射望远镜偏差算法
    在这里插入图片描述

Python望远镜色差

完美透镜具有抛物线形状,因此它会对入射波施加二次相位,并且尺寸无限大。这种透镜将输入平面波聚焦到焦点处的单个点,或者在满足成像条件时,它可以将点物体成像为一个点:
1 u + 1 v = 1 f \frac{1}{u}+\frac{1}{v}=\frac{1}{f} u1+v1=f1
其中 u u u是镜头与物体之间的距离, v v v是镜头与图像之间的距离, f f f是镜头的焦距。根据几何光学,点源将产生点图像。然而,即使使用完美的镜头,点源也不会产生点像,而是会产生模糊盘。这个模糊盘称为点扩展函数,它表示成像系统的空间分辨率。这是由于有限的镜头光圈导致一些光束离开点源并错过镜头。因此,图像的分辨率是镜头或成像系统光圈大小的函数。如果镜头是完美的,没有任何像差,则点源的图像大小,即PSF,为:
P S F = 4 λ ν π D PSF=\frac{4 \lambda \nu}{\pi D} PSF=πD4λν
其中 D D D是镜头光圈, v v v是到图像的距离, λ \lambda λ是波长。显然,当我们增加镜头尺寸时,PSF 更小,这意味着分辨率更高。此外,靠近镜头并减少 v v v 可以提高分辨率。然而,即使透镜无限大并且来自点光源的所有光都进入透镜,由于光的波动方面,图像也不能小于波长的一半。这也可以在波长相关函数中看到。减小波长将减小 PSF 并提高分辨率。然而,为了观察这些效应,我们必须离开几何光学并考虑波动光学。

最常见的像差类型是散焦。在散焦中,图像会失焦,因为探测器没有精确地位于图像平面上。在这种情况下,点物体会产生更大的模糊盘,也就是说,我们有更大的点扩展函数,这会导致图像分辨率降低。PSF 的大小与与图像平面的距离 z 的关系为:
PSF ⁡ ( z ) = PSF ⁡ ( 0 ) 1 + ( z λ π P S F ( 0 ) 2 ) 2 \operatorname{PSF}(z)=\operatorname{PSF}(0) \sqrt{1+\left(\frac{z \lambda}{\pi P S F(0)^2}\right)^2} PSF(z)=PSF(0)1+(πPSF(0)2zλ)2
这里,当 z z z小时,PSF的大小缓慢增加,但当 z z z大时,PSF的大小随 z z z线性增加。因此,即使稍微失焦,PSF 也不会受到影响。这个范围称为瑞利范围,它决定了我们系统的焦深。如果焦深很大,我们就不需要那么精确,不同距离的不同物体仍然可以对焦。然而,当焦深较小时,只有一个物体会被聚焦,从而导致物体清晰而背景模糊的美丽图像。焦深 b b b 的计算公式为:
b = π P S F ( 0 ) 2 2 λ b=\frac{\pi P S F(0)^2}{2 \lambda} b=2λπPSF(0)2
因此,较小的光斑会导致较小的焦深。因此,当光圈较大时,我们可以获得较高的分辨率和较低的焦深。

第二种像差是探测器没有根据图像平面定向。这会导致 PSF 成为平面位置的函数。图像中心的分辨率可能很高,而沿着特定轴的分辨率会较低。如果倾斜足够大,PSF 将变成不对称椭圆。我们可以根据泽尼克多项式定义倾斜:
T x = A x cos ⁡ ( α ) T y = A y sin ⁡ ( α ) \begin{aligned} & T_x=A_x \cos (\alpha) \\ & T_y=A_y \sin (\alpha) \end{aligned} Tx=Axcos(α)Ty=Aysin(α)
因此,这种类型的像差也很容易通过沿着图像平面正确定位探测器来解决。

任何玻璃都有一定的色散,色散取决于波长。因此,折射率是波长的函数,因此透镜焦距也是波长的函数。通常,折射率与波长的关系为 1 0 − 4 10^{-4} 104,当我们使用宽带光成像或焦距较短且镜头较厚时,它开始影响成像,因此折射率的影响分散度高。为了克服望远镜中的色差,我们可以用镜子代替镜头。镜子将所有波长反射到同一方向,因此没有色差。此外,可以将两个镜头组合在一起,每个镜头由不同类型的玻璃制成,在所需的带宽下具有相反的色差,这样它们的色差就会相互抵消。

Python色差

import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
from scipy import signal
import math

定义用于拟合垂直切片的模型函数

def gauss(x, *p):A, mu, sigma = preturn A*np.exp(-(x-mu)**2/(2.*sigma**2))

假设一个简单的线性校准定律

def compute_fwhm_data(filename,ref_wavelength_1_x,ref_wavelength_2_x,ref_wavelength_1=3948,ref_wavelength_2=7032,wavelength1=4000,wavelength2=7000,bin_size=50):rate = (ref_wavelength_2 - ref_wavelength_1) / (ref_wavelength_2_x - ref_wavelength_1_x)offset = 3948 - 527 * ratex1 = math.floor((wavelength1 - offset) / rate)x2 = math.ceil((wavelength2 - offset) / rate)image = fits.open(filename)imageData = image[0].datacleanImageData = signal.medfilt2d(imageData, kernel_size=3)sliceData = cleanImageData[:, x1:x2]width = len(sliceData[0])height = len(sliceData)fwhmData = [0] * widthfor columnIndex in np.arange(width):columnValues = sliceData[:, columnIndex]maxIndex = np.argmax(columnValues)background = np.concatenate((columnValues[ : maxIndex-bin_size], columnValues[maxIndex + bin_size : ]))backgroundValue = np.mean(background, axis=0)columnValues = np.subtract(columnValues, backgroundValue)maxValue = columnValues[maxIndex]spectrum = columnValues[maxIndex - bin_size : maxIndex + bin_size]maxIndex = np.argmax(spectrum)xdata = np.arange(len(spectrum))p0 = [maxValue, maxIndex, 3]coeff, var_matrix = curve_fit(gauss, xdata, spectrum, p0=p0)A, mu, sigma = coefffwhmData[columnIndex] = 2 * sigma fwhmData_smooth = signal.savgol_filter(fwhmData, 80, 3)min = np.min(fwhmData_smooth)normalized = fwhmData_smooth / minreturn normalized
def calculate_score(fwhmData):return len(fwhmData) / np.sum(fwhmData)
def get_for_wavelength(fwhmData,wavelength,wavelength1=4000,wavelength2=7100):step = len(fwhmData) / (wavelength2 - wavelength1)index = math.floor((wavelength - wavelength1) * step)return fwhmData[index]
rc10_fwhmData = compute_fwhm_data(filename="data/RC10/SSC.fits",ref_wavelength_1_x=414,   ref_wavelength_2_x=1865,  ref_wavelength_1 = 4047,ref_wavelength_2 = 6300,
)step = (7000 - 4000) / len(rc10_fwhmData)
xdata = np.arange(4000, 7000, step)plt.figure(figsize=(16, 8))
plt.title("Longitudinal Chromatic Aberration")
plt.plot(xdata, rc10_fwhmData, label="RC10", color='gray')
plt.xlabel("Wavelength in Å")
plt.ylabel("FWHM / FWHM min")
plt.xlim(4000, 7000)
plt.ylim(0, 5)
plt.legend();print("score (the higher — up to 1.0 — the better):")
print(f"RC10 -> {calculate_score(rc10_fwhmData):.2f}")

👉更新:亚图跨际

这篇关于Python(TensorFlow)和MATLAB及Java光学像差导图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136687

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1