Hdfs FileSystem 使用姿势不对导致的内存泄露

2024-09-04 17:18

本文主要是介绍Hdfs FileSystem 使用姿势不对导致的内存泄露,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、问题描述
    • 二、问题排查
      • Java Heap Dump文件
      • 使用Jmap获取运行中的jvm内存
      • 在Jhat页面查找对应类实例具体的引用
      • 问题定位
    • 三、解决方案
    • 四、总结

一、问题描述

有用户反馈访问httpfs服务偶尔出现502的情况,所以上httpfs服务器看了下,发现有一台因为OOM挂掉了(运维告警没弄好,所以没及时通知到)。

目前有两台HttpFs,通过nginx转发,如果刚好请求转发到挂掉的那台,就会出现502的问题。

因为是OOM问题,所以马上就想着去分析gc日志了。后面简单分析了gc日志,发现从httpfs启动以来,old区域内存呈不断递增的趋势:

在这里插入图片描述

以上图表是通过 https://gceasy.io 网站分析得到

从gc日志可以看出,old区域的占用大小一直从100M上升到了8G,后面有进行了几次fullGc,但是释放的空间并不多,最后程序由于内存空间不足导致OOM。同时看了一下另外一台没挂的httpfs服务,old区域也非常大了,接近OOM。

httpfs只是一个很简单的web代理服务,功能只有下载和上传数据,大部分对象应该在young gc就会清理回收掉才对。所以可以判断应该是哪里代码写的有问题导致了内存泄露

二、问题排查

Java Heap Dump文件

在java程序启动时加上参数-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/toPath/heapdump.hprof可以在程序出现OOM时输出head dump文件。这样我们就可以通过这个heapdump文件分析哪些对象导致的内存泄露,最终定位到问题。

我们可以通过jhat来分析heapdump.hprof文件:

# heapdump.hprof比较大的话,需要调大jhat的堆内存,防止jhat分析过程中内存溢出
jhat -J-Xmx2048M heapdump.hprof

由于我们的httpfs服务在启动时已经加上了上面的JVM参数,所以在OOM时也输出了heapdump.hprof,但是比较尴尬的是,我们服务的堆内存比较大,因此OOM生成的heapdump.hprof也很大,达到14G的大小。

heapdump.hprof文件太大导致基本无法使用jhat分析。(我们尝试将jhat的堆内存调整到20G,但是在jhat运行一段时间后还是因为OOM而退出),所以放弃直接去分析这个14G的heapdump.hprof。

使用Jmap获取运行中的jvm内存

由于OOM生成的heapdump.hprof无法分析,我们只能让程序先运行一段时间,之后再通过jmap来获取jvm对象的相关信息,甚至也可以使用jmap输出heapdump文件来给jhat分析。

jmap -histo:live pid输出java堆的对象相关信息

在这里插入图片描述

也可以先输出dump文件,然后通过jhat分析:

jmap -dump:live,format=b,file=/path/heapdump.hprof pid
jhat -J-Xmx2048M heapdump.hprof
# jhat启动后在浏览器输入  http://ip:7000 就可以看到对应的信息了

在Jhat页面查找对应类实例具体的引用

通过上面的jmap -histo:live我们可以看出,内存中有大量的Hashtable$Entity和ConcurrentHashMap$Entity对象。但是使用Hashtable和ConcurrentHashMap可能存在很多,我们依旧无法很直观的看出是代码的哪部分出现问题。因此我们还需要借助jhat来找到这些Hashtable和ConcurrentHashMap对象是被哪些对象所引用的

下面我们随机找一个类演示一下如何通过jhat查看对象实例之间的引用:

先通过http://ip:7000进入jhat的首页面,然后拉到最下方

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

按照上面的方法,通过不断的查询,最终我们会发现到底是哪些类引用了这些类

问题定位

经过排查,我们发现问题的源头在于org.apache.hadoop.fs.FileSystem这个类,httpfs仅仅运行一天,这个类就产生了几千个实例。这些实例虽然占用的大小不大,但是每产生一个FileSystem实例时,它都会维护一个Properties对象(Hashtable的子类),用来存储hadoop的那些配置信息。hadoop的配置有几百个很正常,因此一个FileSystem实例实例就会对应上百个的Hashtable$Entity实例,就会占用大量内存

那为什么会有如此多的FileSystem实例呢?

以下是我们获取FIleSystem的方式:

FileSystem fileSystem = FileSystem.get(uri, conf, "hadoopuser");

FileSystem.get底层是有使用缓存的,因此我们在每次使用完并没有关闭fileSystem,只是httpfs服务关闭时才去关闭FileSystem。

FileSystem.get底层的一些代码:

  public static FileSystem get(URI uri, Configuration conf) throws IOException {String scheme = uri.getScheme();String authority = uri.getAuthority();if (scheme == null && authority == null) {     // use default FSreturn get(conf);}if (scheme != null && authority == null) {     // no authorityURI defaultUri = getDefaultUri(conf);if (scheme.equals(defaultUri.getScheme())    // if scheme matches default&& defaultUri.getAuthority() != null) {  // & default has authorityreturn get(defaultUri, conf);              // return default}}//如果cache被关闭了,每次都会创建一个新的FileSystemString disableCacheName = String.format("fs.%s.impl.disable.cache", scheme);if (conf.getBoolean(disableCacheName, false)) {return createFileSystem(uri, conf);}//直接从cache获取return CACHE.get(uri, conf);}//Cache.classFileSystem get(URI uri, Configuration conf) throws IOException{Key key = new Key(uri, conf);return getInternal(uri, conf, key);}//Cache.classprivate FileSystem getInternal(URI uri, Configuration conf, Key key) throws IOException{FileSystem fs;synchronized (this) {fs = map.get(key);}if (fs != null) {return fs;}fs = createFileSystem(uri, conf);synchronized (this) { // refetch the lock againFileSystem oldfs = map.get(key);if (oldfs != null) { // a file system is created while lock is releasingfs.close(); // close the new file systemreturn oldfs;  // return the old file system}// now insert the new file system into the mapif (map.isEmpty()&& !ShutdownHookManager.get().isShutdownInProgress()) {ShutdownHookManager.get().addShutdownHook(clientFinalizer, SHUTDOWN_HOOK_PRIORITY);}fs.key = key;map.put(key, fs);if (conf.getBoolean("fs.automatic.close", true)) {toAutoClose.add(key);}return fs;}}

我们httpfs服务的fs.%s.impl.disable.cache并没有开启,因此肯定有使用cache。所以问题很可能是Cache的key判断有问题

看了下Cache的Key,判断Key是否相等主要有三个因素

   static class Key {final String scheme;final String authority;final UserGroupInformation ugi;}

scheme和authority基本都是一样的,因此问题大概率是出在ugi上面。后面我们通过arthas查看了此处的ugi的hashcode,确实每次请求的都不一样

虽然使用cache,但是由于Key的判断问题,所以基本每次请求都会生成一个新的实例,就会出现内存泄露的问题。

最后我们发现,ugi对象的不同是由于我们获取FileSystem时指定了用户有关,我们看一下指定用户时的方法:

  public static FileSystem get(final URI uri, final Configuration conf,final String user) throws IOException, InterruptedException {String ticketCachePath =conf.get(CommonConfigurationKeys.KERBEROS_TICKET_CACHE_PATH);//这里每次获取的ugi的hashcode都不一样UserGroupInformation ugi =UserGroupInformation.getBestUGI(ticketCachePath, user);return ugi.doAs(new PrivilegedExceptionAction<FileSystem>() {@Overridepublic FileSystem run() throws IOException {return get(uri, conf);}});}
//UserGroupInformation.getBestUGIpublic static UserGroupInformation getBestUGI(String ticketCachePath, String user) throws IOException {if (ticketCachePath != null) {return getUGIFromTicketCache(ticketCachePath, user);} else if (user == null) {return getCurrentUser();} else {//最终走到这里return createRemoteUser(user);}    }
//UserGroupInformation.createRemoteUserpublic static UserGroupInformation createRemoteUser(String user, AuthMethod authMethod) {if (user == null || user.isEmpty()) {throw new IllegalArgumentException("Null user");}Subject subject = new Subject();subject.getPrincipals().add(new User(user));UserGroupInformation result = new UserGroupInformation(subject);result.setAuthenticationMethod(authMethod);return result;}

我们没有开启kerberos配置。UserGroupInformation其实只是对JAAS进行了一些封装,因此UserGroupInformation的hashcode其实就是计算其封装的Subject的hashcode。

从代码可以看出,如果指定了用户,每次都会构造一个新的Subject,因此计算出来的UserGroupInformation的hashcode也都不一样。这样也最终导致FileSystem的Cache不生效。

三、解决方案

  1. 修改源码:Cache$Key的hashcode方法,让其直接根据UserGroupInformation的userName来判定是否相等。
  2. 自己构建一个简单的Cache

四、总结

这个内存泄露的问题其实并不难,只需要进行简单的排查即可找到问题所在,解决方法也很简单。写这篇博客主要还是为了记录一下排查这种内存泄露的问题一个大体思路。

本文也详细介绍了如何使用jmap和jhat来定位问题,另外,我们平常也要记得在启动java程序时都带上-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/toPath/heapdump.hprof参数,这样当出现OOM时,我们才可以更方便的排查问题所在。

这篇关于Hdfs FileSystem 使用姿势不对导致的内存泄露的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1136542

相关文章

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v