谷歌提出新型半监督方法 MixMatch

2024-09-04 16:32

本文主要是介绍谷歌提出新型半监督方法 MixMatch,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       事实证明,半监督学习可以很好地利用无标注数据,从而减轻对大型标注数据集的依赖。而谷歌的一项研究将当前主流的半监督学习方法统一起来,得到了一种新算法 MixMatch。该算法可以为数据增强得到的无标注样本估计(guess)低熵标签,并利用 MixUp 来混合标注和无标注数据。实验表明,MixMatch 在许多数据集和标注数据上获得了 STOA 结果,展现出巨大优势。例如,在具有 250 个标签的 CIFAR-10 数据集上,MixMatch 将错误率降低了 71%(从 38% 降至 11%),在 STL-10 上错误率也降低了 2 倍。对于差分隐私 (differential privacy),MixMatch 可以在准确率与隐私间实现更好的权衡。最后,研究者通过模型简化测试对 MixMatch 进行了分析,以确定哪些组件对该算法的成功最为重要。

缺少数据怎么办

近期大型深度神经网络取得的成功很大程度上归功于大型标注数据集的存在。然而,对于许多学习任务来说,收集标注数据成本很高,因为它必然涉及专家知识。医学领域就是一个很好的例子,在医学任务中,测量数据出自昂贵的机器,标签则来自于多位人类专家耗时耗力的分析。此外,数据标签可能包含一些隐私类的敏感信息。相比之下,在许多任务中,获取无标注数据要容易得多,成本也低得多。

半监督学习 (SSL) 旨在通过在模型中使用无标注数据,来大大减轻对标注数据的需求。近期许多半监督学习方法都增加了一个损失项,该损失项基于无标注数据计算,以促进模型更好地泛化到未知数据。在最近的工作中,该损失项一般分为三类:熵最小化 [17, 28]——促使模型输出对无标注数据的可信预测;一致性正则化(consistency regularization)——促使模型在其输入受到扰动时产生相同的输出分布;通用正则化(generic regularization)——促使模型很好地泛化,并避免出现对训练数据的过拟合。

谷歌的解决方案

谷歌的这项研究中介绍了一种新型半监督学习算法 MixMatch。该算法引入了单个损失项,很好地将上述主流方法统一到半监督学习中。与以前的方法不同,MixMatch 同时针对所有属性,从而带来以下优势:

  • 实验表明,MixMatch 在所有标准图像基准上都获得了 STOA 结果。例如,在具备 250 个标签的 CIFAR-10 数据集上获得了 11.08% 的错误率(第二名的错误率为 38%);

  • 模型简化测试表明,MixMatch 比其各部分的总和要好;

  • MixMatch 有助于差分隐私学习 (differentially private learning),使 PATE 框架 [34] 中的学生能够获得新的 STOA 结果,该结果在增强隐私保障的同时,也提升了准确率。

简而言之,MixMatch 为无标注数据引入了一个统一的损失项,它在很好地减少了熵的同时也能够保持一致性,以及保持与传统正则化技术的兼容。

图 1:MixMatch 中使用的标签估计过程图。对无标注图像使用 k 次随机数据增强,并将每张增强图像馈送到分类器中。然后,通过调整分布的温度来「锐化」这 K 次预测的平均值。完整说明参见算法 1。

MixMatch 

半监督学习方法 MixMatch 是一种「整体」方法,它结合了半监督学习主流范式的思想和组件。给定一组标注实例 X 及其对应的 one-hot 目标(代表 L 个可能标签中的一个)和一组同样大小的无标注实例 U,MixMatch 可以生成一组增强标注实例 X' 和一组带有「估计」标签的增强无标注实例 U'。然后分别使用 U' 和 X' 计算无标注损失和标注损失。下式即为半监督学习的组合损失 L:

其中 H(p, q) 是分布 p 和 q 之间的交叉熵,T、K、α 和 λ_U 是下面算法 1 中的超参数。下图展示了完整的 MixMatch 算法和图 1 中展示的标签估计过程。

实验

为了测试 MixMatch 的有效性,研究者在半监督学习基准上测试其性能,并执行模型简化测试,梳理 MixMatch 各个组件的作用。

研究者首先评估了 MixMatch 在四个基准数据集上的性能,分别是 CIFAR-10、CIFAR-100、SVHN 和 STL-10。其中前三个数据集是监督学习常用的图像分类基准;利用这些数据集评估半监督学习的标准方法是将数据集中的大部分数据视为无标注的,将一小部分(例如几百或数千个标签)作为标注数据。STL-10 是专为半监督学习设计的数据集,包含 5000 个标注图像和 100,000 个无标注图像,无标注图像的分布与标注数据略有不同。

对于 CIFAR-10,研究者使用 250 到 4000 个不同数量的标注样本来评估每种方法的准确率(标准做法)。结果如图 2 所示。

图 2:对于不同数量的标签,MixMatch 与基线方法在 CIFAR-10 上的错误率对比。「Supervised」表示所有 50000 个训练样本都是标注数据。当使用 250 个标注数据时,MixMatch 的错误率与使用 4000 个标签的次优方法性能相当。

研究者还在具备 10000 个标签的 CIFAR-100 数据集上评估了基于较大模型的 MixMatch,并与 [2] 的结果进行了对比。结果如表 1 所示。

表 1:使用较大模型(2600 万个参数)在 CIFAR-10 和 CIFAR-100 数据集上的错误率对比。

作为标准方法,研究者首先考虑将有 73257 个实例的训练集分割为标注数据和无标注数据的情况。结果如图 3 所示。

图 3:使用不同数量的标签时,MixMatch 与基线方法在 SVHN 数据集上的错误率比较。「Supervised」指所有 73257 个训练实例均为标注数据。在使用 250 个标注样本时,MixMatch 就几乎达到了 Supervised 模型的监督训练准确率。

表 2:MixMatch 与其他方法在 STL-10 数据集上的错误率对比,分为全为标注数据(5000 个)与只使用 1000 个标注数据(其余为无标注数据)两种实验设置。

由于 MixMatch 结合了多种半监督学习机制,它与文献中已有的方法有很多相似之处。因此,研究者通过增删模型组件研究各个组件对模型性能的影响,以便更好地了解哪些组件为 MixMatch 提供更多贡献。

表 4:模型简化测试结果。MixMatch 及其各种「变体」在 CIFAR-10 数据集上的错误率对比,分为 250 个标注数据和 4000 个标注数据两种情况。ICT 使用 EMA 参数和无标注 mixup,无锐化。

这篇关于谷歌提出新型半监督方法 MixMatch的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136440

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac