Segment Tree题型总结

2024-09-04 14:48
文章标签 总结 tree 题型 segment

本文主要是介绍Segment Tree题型总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Segment Tree 的基本操作 Segment Tree Build, Segment Tree Query, Segment Tree Modify 必须熟练掌握;

线段树长什么样子,就是上面的样子,注意到数组A并不要求是sort的,range 是index的范围,每个leaf节点就是A中每个element. 

Interval Sum 思路:其实,这个题目是为了后面的follow up做准备的,LogN time for query; 如果数组是个动态的, 那么就要用到segment tree或者树状数组;现在这里用segment tree来做解答;Time: m Log(K) , m是query的次数,K是数组里面的最大值;Space: O(N) 

/*** Definition of Interval:* public classs Interval {*     int start, end;*     Interval(int start, int end) {*         this.start = start;*         this.end = end;*     }* }*/public class Solution {/*** @param A: An integer list* @param queries: An query list* @return: The result list*/public List<Long> intervalSum(int[] A, List<Interval> queries) {List<Long> list = new ArrayList<>();SegmentTree segmentTree = new SegmentTree(A);for(Interval interval: queries) {list.add(segmentTree.query(interval.start, interval.end));}return list;}private class SegmentTreeNode {public int start, end;public long sum;public SegmentTreeNode left, right;public SegmentTreeNode (int start, int end) {this.start = start;this.end = end;this.sum = 0;this.left = null;this.right = null;}}private class SegmentTree {public SegmentTreeNode root;public int size;public SegmentTree(int[] A) {this.size = A.length;this.root = buildTree(A, 0, size - 1);}private SegmentTreeNode buildTree(int[] A, int start, int end) {if(start > end) {return null;}SegmentTreeNode node = new SegmentTreeNode(start, end);if(start == end) {node.sum = A[start];return node;}int mid = start + (end - start) / 2;node.left = buildTree(A, start, mid);node.right = buildTree(A, mid + 1, end);node.sum = node.left.sum + node.right.sum;return node;}private long querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;long leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}public long query(int start, int end) {return querySum(root, start, end);}}
}

Interval sum II 思路:如果数组modify的话,那么prefixsum就没有什么用了,因为sum需要O(N),所以这题正确的解法还是segment Tree

public class Solution {/* you may need to use some attributes here *//** @param A: An integer array*/private SegmentTree tree;public Solution(int[] A) {tree = new SegmentTree(A);}/** @param start: An integer* @param end: An integer* @return: The sum from start to end*/public long query(int start, int end) {return tree.querySum(start, end);}/** @param index: An integer* @param value: An integer* @return: nothing*/public void modify(int index, int value) {tree.modify(index, value);}private class SegmentTreeNode {public int start, end;public long sum;public SegmentTreeNode left, right;public SegmentTreeNode(int start, int end) {this.start = start;this.end = end;this.sum = 0;this.left = null;this.right = null;}}private class SegmentTree {private SegmentTreeNode root;private int size;public SegmentTree(int[] A) {this.size = A.length;this.root = buildTree(A, 0, size - 1);}private SegmentTreeNode buildTree(int[] A, int start, int end) {if(start > end) {return null;}SegmentTreeNode node = new SegmentTreeNode(start, end);if(start == end) {node.sum = A[start];return node;}int mid = start + (end - start) / 2;node.left = buildTree(A, start, mid);node.right = buildTree(A, mid + 1, end);node.sum = node.left.sum + node.right.sum;return node;}private long querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;long leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}private void modify(SegmentTreeNode root, int index, int value) {if(root.start == root.end && root.end == index) {root.sum = value;return;}int mid = root.start + (root.end - root.start) / 2;if(index <= mid) {modify(root.left, index, value);} else {modify(root.right, index, value);}root.sum = root.left.sum + root.right.sum;}public long querySum(int start, int end) {return querySum(root, start, end);}public void modify(int index, int value) {modify(root, index, value);}}
}

Count of Smaller Number 因为A已经给定了,所以可以用统计好的数组B来build tree;建立树是O(N),查询是mlog(n)

public class Solution {/*** @param A: An integer array* @param queries: The query list* @return: The number of element in the array that are smaller that the given integer*/public List<Integer> countOfSmallerNumber(int[] A, int[] queries) {List<Integer> list = new ArrayList<Integer>();int[] B = new int[10001];for(int i : A) {B[i]++;}SegmentTree tree = new SegmentTree(B);for(int i : queries) {list.add(tree.querySum(0, i - 1));}return list;}private class SegmentTreeNode {public int start, end;public SegmentTreeNode left, right;public int sum;public SegmentTreeNode(int start, int end) {this.start = start;this.end = end;this.sum = 0;this.left = null;this.right = null;}}private class SegmentTree {private SegmentTreeNode root;private int size;public SegmentTree(int[] A) {this.size = A.length;this.root = buildTree(A, 0, size - 1);}private SegmentTreeNode buildTree(int[] A, int start, int end) {if(start > end) {return null;}SegmentTreeNode root = new SegmentTreeNode(start, end);if(start == end) {root.sum = A[start];return root;}int mid = start + (end - start) / 2;root.left = buildTree(A, start, mid);root.right = buildTree(A, mid + 1, end);root.sum = root.left.sum + root.right.sum;return root;}private int querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;int leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}public int querySum(int start, int end) {return querySum(root, start, end);}}
}

这里可以稍微优化一下,可以省去一个10001size的数组;把modify稍微改一下,变成add,建立一个空segment tree,然后一点点的往里面modify添加数据;建立数是O(N),查询是mlog(n)

public class Solution {/*** @param A: An integer array* @param queries: The query list* @return: The number of element in the array that are smaller that the given integer*/public List<Integer> countOfSmallerNumber(int[] A, int[] queries) {List<Integer> list = new ArrayList<Integer>();SegmentTree tree = new SegmentTree(10001);for(int i : A) {tree.add(i, 1);}for(int i : queries) {if(i == 0) {list.add(0);} else {list.add(tree.querySum(0, i -1));}}return list;}private class SegmentTreeNode {public int start, end;public SegmentTreeNode left, right;public int sum;public SegmentTreeNode(int start, int end) {this.start = start;this.end = end;this.sum = 0;this.left = null;this.right = null;}}private class SegmentTree {private SegmentTreeNode root;private int size;public SegmentTree(int size) {this.size = size;this.root = buildTree(0, size - 1);}private SegmentTreeNode buildTree(int start, int end) {if(start > end) {return null;}SegmentTreeNode root = new SegmentTreeNode(start, end);if(start == end) {return root;}int mid = start + (end - start) / 2;root.left = buildTree(start, mid);root.right = buildTree(mid + 1, end);return root;}private int querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;int leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}private void add(SegmentTreeNode root, int index, int value) {if(root.start == root.end && root.end == index) {root.sum += value;return;}int mid = root.start + (root.end - root.start) / 2;if(index <= mid) {add(root.left, index, value);} else {add(root.right, index, value);}root.sum = root.left.sum + root.right.sum;}public int querySum(int start, int end) {return querySum(root, start, end);}public void add(int index, int value) {add(root, index, value);}}
}

Count of Smaller Number before itself. 思路:用segment tree来记录当前点之前的所有的count,并且维护线段树的count,首先建立一个空的线段树,然后每次遇见一个数,把他的index node count值++,最后 querySum (0, A[i]-1)的线段count即可,注意一定要做一个特殊例子判断,就是A[i] == 0,比0小的数没有,因为数组是[0,10000] 的数,所以,没有,list直接加0,但是0这个node的count还是要++,因为他是其他比0大的数的小于的count;

public class Solution {/*** @param A: an integer array* @return: A list of integers includes the index of the first number and the index of the last number*/public List<Integer> countOfSmallerNumberII(int[] A) {List<Integer> list = new ArrayList<>();SegmentTree segmentTree = new SegmentTree(10001);for(int num: A) {if(num == 0) {list.add(0);} else {list.add(segmentTree.querySum(0, num - 1));}segmentTree.add(num, 1);}return list;}public class SegmentTreeNode {public int start, end;public int sum;public SegmentTreeNode left, right;public SegmentTreeNode (int start, int end) {this.start = start;this.end = end;this.sum = 0;this.left = null;this.right = null;}}public class SegmentTree {public SegmentTreeNode root;public int size;public SegmentTree (int size) {this.size = size;this.root = buildTree(0, size - 1);}public SegmentTreeNode buildTree(int start, int end) {if(start > end) {return null;}SegmentTreeNode node = new SegmentTreeNode(start, end);if(start == end) {return node;}int mid = start + (end - start) / 2;node.left = buildTree(start, mid);node.right = buildTree(mid + 1, end);return node;}public int querySum(int start, int end) {return querySumHelper(root, start, end);}public int querySumHelper(SegmentTreeNode node, int start, int end) {if(node.start == start && node.end == end) {return node.sum;}int mid = node.start + (node.end - node.start) / 2;// node.start..........mid.......node.end;//              start.......end;int leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySumHelper(node.left, start, Math.min(mid, end));}if(mid + 1 <= end) {rightsum = querySumHelper(node.right, Math.max(mid + 1, start), end);}return leftsum + rightsum;}public void add(int index, int value) {addHelper(root, index, value);}public void addHelper(SegmentTreeNode node, int index, int value) {if(node.start == node.end && node.end == index) {node.sum += value;return;}int mid = node.start + (node.end - node.start) / 2;if(index <= mid) {addHelper(node.left, index, value);}if(mid + 1 <= index) {addHelper(node.right, index, value);}node.sum = node.left.sum + node.right.sum;}}
}

Count of Smaller Numbers After Self O(NlogN)算法沿用Count of Smaller numbers 和 count of smaller numbers before self。还是用线段树求解,但是这个题目有负数的情况,解决方法很简单,就是求得max和min之后,把整个数组解空间往右shift min位子就可以了。注意如果min > 0, 那么没必要shift; 那么segment tree的class一点都不需要改变,只需要把count的代码,每次+ Math.abs(min);把before的代码稍微改改就可以用了,注意题目要求是逆着count,所以list add的时候是add(0,count);

class Solution {public List<Integer> countSmaller(int[] nums) {List<Integer> list = new ArrayList<Integer>();if(nums == null || nums.length == 0) {return list;}int minvalue = nums[0], maxvalue = nums[0];for(int i : nums) {minvalue = Math.min(minvalue, i);maxvalue = Math.max(maxvalue, i);}// 因为有负数,所以需要shift 坐标 math.abs(minvalue), 但是如果minvalue > 0,则没必要shift;minvalue = Math.min(minvalue, 0);int size = maxvalue - minvalue + 1;SegmentTree tree = new SegmentTree(size);for(int i = nums.length - 1; i >= 0; i--) {if(nums[i] == minvalue) {list.add(0, 0);} else {list.add(0, tree.querySum(0, nums[i] + Math.abs(minvalue) - 1));}tree.add(nums[i] + Math.abs(minvalue), 1);}return list;}private class SegmentTreeNode {public int start, end;public int sum;public SegmentTreeNode left, right;public SegmentTreeNode(int start, int end) {this.start = start;this.end = end;}}private class SegmentTree {public SegmentTreeNode root;public int size;public SegmentTree(int size) {this.size = size;this.root = buildTree(0, size - 1);}private SegmentTreeNode buildTree(int start, int end) {if(start > end) {return null;}SegmentTreeNode root = new SegmentTreeNode(start, end);if(start == end) {return root;}int mid = start + (end - start) / 2;root.left = buildTree(start, mid);root.right = buildTree(mid + 1, end);return root;}private int querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;int leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}private void add(SegmentTreeNode root, int index, int value) {if(root.start == root.end && root.end == index) {root.sum += value;return;}int mid = root.start + (root.end - root.start) / 2;if(index <= mid) {add(root.left, index, value);} else {add(root.right, index, value);}root.sum = root.left.sum + root.right.sum;}public int querySum(int start, int end) {return querySum(root, start, end);}public void add(int index, int value) {add(root, index, value);}}
}

Range Sum Query - Mutable 思路:用segment tree,可以直接用array build tree,也可以先建立一个棵空的segment tree,然后每个index modify成(i, nums[i]),然后按照模板写出segment tree即可;Time Build Tree O(N),  query , modify O(logN).

class NumArray {private SegmentTree tree;public NumArray(int[] nums) {tree = new SegmentTree(nums);}public void update(int i, int val) {tree.modify(i, val);}public int sumRange(int i, int j) {return tree.querySum(i, j);}private class SegmentTreeNode {public int start, end;public int sum;public SegmentTreeNode left, right;public SegmentTreeNode (int start, int end) {this.start = start;this.end = end;}}private class SegmentTree {public SegmentTreeNode root;public int size;public SegmentTree(int[] A) {this.size = A.length;this.root = buildTree(A, 0, size - 1);}private SegmentTreeNode buildTree(int[] A, int start, int end) {if(start > end) {return null;}SegmentTreeNode root = new SegmentTreeNode(start, end);if(start == end) {root.sum = A[start];return root;}int mid = start + (end - start) / 2;root.left = buildTree(A, start, mid);root.right = buildTree(A, mid + 1, end);root.sum = root.left.sum + root.right.sum;return root;}private int querySum(SegmentTreeNode root, int start, int end) {if(root.start == start && root.end == end) {return root.sum;}int mid = root.start + (root.end - root.start) / 2;int leftsum = 0, rightsum = 0;if(start <= mid) {leftsum = querySum(root.left, start, Math.min(mid, end));}if(end >= mid + 1) {rightsum = querySum(root.right, Math.max(start, mid + 1), end);}return leftsum + rightsum;}private void modify(SegmentTreeNode root, int index, int value) {if(root.start == root.end && root.end == index) {root.sum = value;return;}int mid = root.start + (root.end - root.start) / 2;if(index <= mid) {modify(root.left, index, value);} else {modify(root.right, index, value);}root.sum = root.left.sum + root.right.sum;}public int querySum(int start, int end) {return querySum(root, start, end);}public void modify(int index, int value) {modify(root, index, value);}}
}/*** Your NumArray object will be instantiated and called as such:* NumArray obj = new NumArray(nums);* obj.update(i,val);* int param_2 = obj.sumRange(i,j);*/

这篇关于Segment Tree题型总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136282

相关文章

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

Linux区分SSD和机械硬盘的方法总结

《Linux区分SSD和机械硬盘的方法总结》在Linux系统管理中,了解存储设备的类型和特性是至关重要的,不同的存储介质(如固态硬盘SSD和机械硬盘HDD)在性能、可靠性和适用场景上有着显著差异,本文... 目录一、lsblk 命令简介基本用法二、识别磁盘类型的关键参数:ROTA查询 ROTA 参数ROTA

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi