Elasticsearch在高并发下如何保证读写一致性

2024-09-04 14:12

本文主要是介绍Elasticsearch在高并发下如何保证读写一致性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当多个客户端几乎同时对同一个索引进行读和写操作时,Elasticsearch 通过多个机制来管理这种一致性,以下是一些关键点和策略,以确保在高并发环境下的读写一致性:

冲突检测与版本控制

当进行并发写入时,Elasticsearch 使用版本控制/冲突检测机制来确保一致性:

  • 乐观并发控制:Elasticsearch 在每个文档上维护版本号。每当文档被更新时,该版本号就会增加。当写入操作请求使用一个特定版本时,Elasticsearch 会检查当前存储的版本与请求的版本是否匹配。
  • 冲突处理:如果两个并发请求试图更新同一个文档,只有第一个请求会成功,第二个请求会收到一个版本冲突错误。应用程序可以根据业务逻辑对这些冲突进行处理,比如重试或者合并数据。

强一致性与最终一致性

Elasticsearch 的默认一致性模型为最终一致性,而不是强一致性。决定使用 GRADUAL 更新模型时需要注意如下:

  • 搜索一致性:Elasticsearch 提供了一个选项,允许搜索请求在读取时返回最新的可用数据。通过使用 refresh 参数,您可以选择读取最新的数据。

  • 写入一致性:在进行写入操作时,Elasticsearch 提供了 wait_for_active_shards 选项,这样可以确保一个写入请求在确认写入到有效的分片副本之后再返回成功。

刷新机制

Elasticsearch 的每个索引都有一个“刷新”操作,这个操作会将内存中的操作记录(如新增、更新、删除)刷新到磁盘,使得这些操作可被搜索到。

  • 默认刷新间隔:默认情况下,Elasticsearch 每 1 秒执行一次刷新操作。您可以根据需求通过调整 refresh_interval 参数来减少刷新频率,从而在高并发写入时提升性能。

  • 手动刷新:在一些情况下,您可能希望等待操作完成(特别是在批量写入后),然后显式调用 _refresh API,以确保后续的搜索请求能够看到新的数据。

使用合并分段

Elasticsearch 使用分段(segment)来存储数据。随着写入操作的增多,分段可能会产生许多小的段。

  • 优化检查和合并:可以通过 forcemerge API 来减少段数,提高读操作的性能,这样在新的写入操作与查询之间减少资源竞争。

读写性能优化

高并发意味着大量的读写请求,以及可能的资源竞争。您可以通过以下方式优化性能:

  • 充分利用副本:通过配置合适数量的副本分片,可以分摊读请求的压力,提高查询响应能力。

  • 异步写入:对于一些写操作(如日志数据等),可以考虑采用异步处理的方式,减小直接对外部请求的影响。

日志索引最佳实践

如果使用 Elasticsearch 作为实时日志存储,建议:

  • 使用时间序列索引:将不同时间段的数据划分为不同的索引,减少单个索引的压力。

  • 设置合理的索引策略:例如,可以设置旧索引只读,并将写入新索引的数据,这样可提升写入性能。

这篇关于Elasticsearch在高并发下如何保证读写一致性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136211

相关文章

Java JUC并发集合详解之线程安全容器完全攻略

《JavaJUC并发集合详解之线程安全容器完全攻略》Java通过java.util.concurrent(JUC)包提供了一整套线程安全的并发容器,它们不仅是简单的同步包装,更是基于精妙并发算法构建... 目录一、为什么需要JUC并发集合?二、核心并发集合分类与详解三、选型指南:如何选择合适的并发容器?在多

Java 结构化并发Structured Concurrency实践举例

《Java结构化并发StructuredConcurrency实践举例》Java21结构化并发通过作用域和任务句柄统一管理并发生命周期,解决线程泄漏与任务追踪问题,提升代码安全性和可观测性,其核心... 目录一、结构化并发的核心概念与设计目标二、结构化并发的核心组件(一)作用域(Scopes)(二)任务句柄

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

Spring Security 前后端分离场景下的会话并发管理

《SpringSecurity前后端分离场景下的会话并发管理》本文介绍了在前后端分离架构下实现SpringSecurity会话并发管理的问题,传统Web开发中只需简单配置sessionManage... 目录背景分析传统 web 开发中的 sessionManagement 入口ConcurrentSess

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到