LLM代码实现-Qwen(挂载知识库)

2024-09-04 12:04

本文主要是介绍LLM代码实现-Qwen(挂载知识库),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么要挂载知识库?

LLM 在回答用户的问题时可能会产生幻觉,或者由于训练数据中不包含用户想要的内容而无法回答,通常情况下我们可以选择微调模型或者外挂知识库来缓解这类问题。微调模型的对数据和算力都有一定的要求,而知识库的门槛会更低一些,所以通常情况下会选择外挂知识库高效地来解决这类问题。

挂载知识库其实相当于引入外部知识,为了扩展语言模型以减少歧义,从大型文本数据库中检索相关文档。通常将输入序列分割成块并检索与用户输入的 query 相似的文档,然后将所选文档放在输入文本之前作为前置知识以改进模型的预测。使得模型可以更容易、更准确地访问专业知识。

挂载知识库的流程

文档 -> 文档向量化 -> 文档检索 -> 对话交互

我们可以借助 langchain 来实现这个流程:

1. 文档

我们使用中医药书籍来作为知识库,(700 本中医药古籍文本),下载完成后运行以下代码以合并数据。

import osdir_path = "./TCM-Ancient-Books-master"
for index, filename in enumerate(os.listdir(dir_path)):if not filename.endswith(".txt"):continuefile_path = os.path.join(dir_path, filename)with open(file_path, "r", encoding='gb18030', errors='ignore') as f:text = f.read().replace("\n", "")mode = "a" if index else "w"with open("./knowledge.txt", mode, encoding="utf-8") as f:f.write(text + "\n")
2. 文档向量化

在文档检索的过程中如果利用字符串直接匹配文本相似度效率是很低的,尤其是知识库体量非常大的时候,因此一般会先对文档进行切割和向量化以提升检索的速度。将每个文档转换为数值向量,以便计算文档之间的相似度或进行聚类分析。

from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISSdef load_knowledge():filepath = "./knowledge.txt"loader = UnstructuredFileLoader(filepath)docs = loader.load()# chunk-size是文本最大的字符数。chunk-overlap是前后两个chunk的重叠部分最大字数text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=40)docs = text_splitter.split_documents(docs)# 这里需要下载一个中文的文本向量化模型embeddings = HuggingFaceEmbeddings(model_name="./text2vec-large-chinese",model_kwargs={'device': 'cuda'})# 指定向量化文档加载/保存路径save_path = "./med_faiss_store.faiss"if not os.path.exists(save_path):vector_store = FAISS.from_documents(docs, embeddings)vector_store.save_local(save_path)else:vector_store = FAISS.load_local(save_path, embeddings=embeddings)return vector_store
3. 文档检索

利用以下代码根据用户的输入按照相关性对向量库中的文本文本进行排序并取出排名靠前的 5 条知识,并将知识库中的知识库和用户的输入拼接在一起作为新的 prompt。

docs = vector_store.similarity_search(patient_history)     # 计算相似度,并把相似度高的chunk放在前面
knowledge = [doc.page_content for doc in docs[:5]]  # 提取chunk的文本内容
prompt = f"知识库:{knowledge}\n问题如下:\n{patient_input}"
4. 对话交互

最后是把 prompt 送到模型中得到输出,与模型的交互在[上一篇文章]中有详细的介绍,这里就不赘述了,直接给出完整的代码(运行时要注意模型路径、知识库路径是否正确)。

from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
import osdef load_model(model_path):tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True).eval()return tokenizer, modeldef load_knowledge():filepath = "./knowledge.txt"loader = UnstructuredFileLoader(filepath)docs = loader.load()# chunk-size是文本最大的字符数。chunk-overlap是前后两个chunk的重叠部分最大字数text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=40)docs = text_splitter.split_documents(docs)embeddings = HuggingFaceEmbeddings(model_name="./text2vec-large-chinese",model_kwargs={'device': 'cuda'}.# 指定向量化文档加载/保存路径save_path = "./med_faiss_store.faiss"if not os.path.exists(save_path):vector_store = FAISS.from_documents(docs, embeddings)vector_store.save_local(save_path)else:vector_store = FAISS.load_local(save_path, embeddings=embeddings)return vector_storedef clear_screen():os.system('clear')return [], ""def chat_qwen(model, tokenizer, SYSTEM_PROMPT, with_knowledge=False):vector_store = load_knowledge()history, patient_history = clear_screen()while True:patient_input = input("user:")patient_history += patient_inputif patient_input.lower() == "clc":history, patient_history = clear_screen()continueif with_knowledge:docs = vector_store.similarity_search(patient_history)     # 计算相似度,并把相似度高的chunk放在前面knowledge = [doc.page_content for doc in docs[:5]]  # 提取chunk的文本内容prompt = f"知识库:{knowledge}\n问题如下:\n{inputs}"else:prompt = inputsresponse, _ = model.chat(tokenizer, prompt, history=history, system=SYSTEM_PROMPT)history.append((patient_input, response))    # history 不包括系统提示和知识库信息print("assistant:", response, end="\n\n")if __name__ == '__main__':model_path = "/root/autodl-tmp/LLM_MODEL/Qwen-1_8B-Chat"SYSTEM_PROMPT = ""tokenizer, model = load_model(model_path)chat_qwen(model, tokenizer, SYSTEM_PROMPT, with_knowledge=True)

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

这篇关于LLM代码实现-Qwen(挂载知识库)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135970

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte