通过Python库ydata-profiling生成数据分析报告

2024-09-04 10:20

本文主要是介绍通过Python库ydata-profiling生成数据分析报告,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一:ydata-profiling库的介绍

ydata-profiling是一个强大的 Python 库,它为 Pandas DataFrame 提供了快速的探索性数据分析(EDA)。它能够自动生成包含详细统计信息的交互式 HTML 报告,使得数据分析变得更加直观和便捷。

 安装方法:

可以通过 pip 进行安装:

pip install ydata-profiling

主要特点:

  1. 自动化分析:自动执行描述性统计、四分位数、相关性分析等。
  2. 丰富的可视化:报告中包含直方图、箱线图、热力图等多种图表。
  3. 交互式报告:HTML 报告支持交互操作,方便用户深入了解数据。
  4. 自定义配置:用户可以根据需要调整分析的深度和范围。

主要功能:

用于生成数据集的轮廓报告。它为数据分析的初始阶段提供了一个自动化的方式来总结数据集的主要特性。

  1. 快速概览:提供数据集的快速概览,包括数据的类型、缺失值、唯一值等。
  2. 统计描述:生成关于数值变量、分类变量的详细统计描述。
  3. 相关性分析:自动检测变量间的相关性,包括皮尔逊相关系数和Spearman等级相关系数。
  4. 缺失值分析:分析缺失数据的模式,帮助理解数据集中的数据缺失情况。
  5. 文本分析:对于文本数据,提供词频和字符分布的分析。
  6. 交互式报告:生成HTML格式的报告,可以在Web浏览器中查看,并支持交互式探索。

接下来,我将使用ydata-profiling来演示如何为一个示例数据集生成轮廓报告。为了演示,将首先创建一个包含不同类型数据(数值、分类、文本)的样本数据集,然后使用ydata-profiling库生成其数据分析报告。

二:利用ydata-profiling库来生成数据分析报告

要创建一个利用ydata-profiling生成数据报告的实例,首先,我们需要选择一个数据集。我将使用一个著名的鸢尾花数据集(Iris dataset),它包含数值型和分类型数据。然后,我将进行上述分析并生成报告。

鸢尾花数据集(Iris dataset)链接:https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data

# 导入所需的库
import pandas as pd
from ydata_profiling import ProfileReport# 加载鸢尾花数据集
iris = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species'])iris

加载鸢尾花数据集如下:

8253d7f9d9d7444ca90900f783addd50.png

然后使用ydata-profiling库生成其相关的数据分析报告:

# 生成数据报告
profile = ProfileReport(iris, title="Iris Dataset Report", explorative=True)# 将报告保存为HTML文件
profile.to_file("iris_dataset_report.html")

最后我们观察生成的HTML网页包含以下部分:

Overview(概览)

提供数据集的整体信息,如字段数、记录数、缺失值行数、重复行数、内存占用情况等。

显示数据集的基本信息,如大小和变量类型。

baec303bdc0b4189b389a4dfc00748dd.png

Variables(变量)

展示每个变量的详细统计信息,包括数据类型、缺失值、唯一值、描述性统计(均值、中位数、标准差、最小值、最大值等)。

提供直方图、箱线图和其他分布图来可视化每个变量的数据分布。

93e8ec4e427a4347b3dfa492e9cc2a12.png

Interactions(交互作用)

通过散点图和相关可视化工具,展示变量之间的潜在关系和相互作用。

允许用户选择两个变量来查看它们之间的关系,帮助识别变量之间的相关性、差异性等。

f64c7b64e53242dfb9093b8550797d94.png

Correlations(相关性)

使用热力图和其他图形展示变量之间的相关性,包括皮尔逊、斯皮尔曼和肯德尔相关系数。

帮助识别变量之间的线性关系和可能的多重共线性问题。

32c2425f0f104fbaa20b6c57a7f1b1f7.png

Missing values(缺失值)

提供关于数据集中缺失值的分布和数量的详细信息。

通过条形图和热图可视化显示每个变量的缺失值情况,帮助识别数据清洗的需求。

b941aa44615c48a2bbae177e1bfc07bc.png

Sample(样本)

展示数据集的前几行和后几行记录,提供数据的直接预览。

允许用户快速查看数据集的样本,以便对数据有一个直观的理解。

1beb6ab6487947b5b114c01d674e7329.png

Duplicate rows(重复行)

识别并报告数据集中的重复记录。

显示数据集中重复行的数量和具体内容,有助于数据清洗和去重。

840a045b02c144f1bb81b3a0f478f943.png

ydata-profiling 通过这些部分提供了一个全面的数据集分析视图,使得能够快速理解数据集的特征,识别潜在的数据质量问题,并为进一步的数据分析和建模提供基础。报告可以导出为 HTML 或 JSON 格式,便于分享和进一步处理。

 

附录:实时股票行情数据

 

938cf8887a48470fa79c506d93cfb0f8.png

 

想要探索更多元化的数据分析视角,可以关注之前发布的相关内容。

这篇关于通过Python库ydata-profiling生成数据分析报告的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135745

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地