基于Python的机器学习系列(23):奇异值分解(SVD)

2024-09-04 09:44

本文主要是介绍基于Python的机器学习系列(23):奇异值分解(SVD),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在本篇中,我们将介绍如何利用奇异值分解(SVD)进行降维。SVD 是一种强大的矩阵分解方法,可以帮助我们提取数据中的重要特征,广泛应用于数据分析、图像处理等领域。

问题定义

        在数据分析中,特别是当数据维度很高时,我们经常需要减少数据的维度以便于处理和可视化。奇异值分解(SVD)提供了一种有效的方法来实现这一目标。SVD 通过将原始数据矩阵分解成三个矩阵的乘积,从而实现数据的降维。

SVD 的基本思想

  1. 分解矩阵:SVD 将数据矩阵 分解为三个矩阵的乘积。第一个矩阵 包含了数据的主成分方向,第二个矩阵 包含了奇异值,这些奇异值表示了各个主成分的重要性,而第三个矩阵 进一步描述了数据在这些主成分上的分布。

  2. 提取主成分:通过 SVD,我们可以识别出哪些主成分在数据中最为重要。主成分是数据的主要方向,而奇异值则表示这些方向上的变异程度。较大的奇异值意味着对应的主成分在数据中占据了更大的变异量。

  3. 降维:在降维过程中,我们通常选择前几个主要的主成分(即奇异值较大的部分),忽略那些对数据变异贡献较小的部分。通过这种方式,我们可以将数据从高维空间映射到一个较低维的空间,同时尽量保留数据的主要特征。

实现示例

        以下代码展示了如何使用 SVD 来进行数据的奇异值分解,并提取主成分:

import numpy as np
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt# 生成示例数据
X, _ = make_blobs(n_samples=300, centers=3, random_state=42)# 进行奇异值分解
U, Sigma, Vt = np.linalg.svd(X, full_matrices=False)# 打印奇异值
print("奇异值:", Sigma)# 选择前两个主成分进行降维
X_reduced = np.dot(X, Vt.T[:, :2])# 可视化降维后的数据
plt.scatter(X_reduced[:, 0], X_reduced[:, 1])
plt.title("降维后的数据")
plt.xlabel("主成分 1")
plt.ylabel("主成分 2")
plt.show()

        在上述代码中,我们首先生成了一些示例数据,然后对这些数据进行 SVD。通过提取前两个主要的主成分,我们将数据从原始高维空间降维到二维空间,并将结果进行可视化。这种方法使得我们可以在低维空间中更直观地观察和分析数据。

结语

        在本系列文章中,我们探讨了多种机器学习技术,从监督学习中的AdaBoost梯度提升回归到无监督学习中的K均值聚类Mini-Batch K均值以及高斯混合模型(GMM)。此外,我们还深入讨论了主成分分析(PCA)奇异值分解(SVD)的降维技术。

        AdaBoost梯度提升都展示了如何通过加权和迭代提升弱学习器的性能,使得最终模型更具预测能力。与之相比,K均值GMM则提供了无监督的聚类方法,帮助我们从数据中发现隐藏的模式和结构。PCASVD则是强大的降维工具,通过线性变换减少数据的维度,同时保留主要信息,提升计算效率。

        这些技术各有优缺点,选择合适的算法取决于具体的问题和数据特点。对于复杂的分类问题,增强型方法如AdaBoost梯度提升可能更为有效,而对于探索数据结构或简化数据分析任务,无监督方法如K均值GMM和降维技术如PCASVD则是强有力的工具。理解和掌握这些方法将有助于我们更好地应对实际中的各种数据分析和机器学习挑战。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(23):奇异值分解(SVD)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135673

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数