基于Python的机器学习系列(23):奇异值分解(SVD)

2024-09-04 09:44

本文主要是介绍基于Python的机器学习系列(23):奇异值分解(SVD),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在本篇中,我们将介绍如何利用奇异值分解(SVD)进行降维。SVD 是一种强大的矩阵分解方法,可以帮助我们提取数据中的重要特征,广泛应用于数据分析、图像处理等领域。

问题定义

        在数据分析中,特别是当数据维度很高时,我们经常需要减少数据的维度以便于处理和可视化。奇异值分解(SVD)提供了一种有效的方法来实现这一目标。SVD 通过将原始数据矩阵分解成三个矩阵的乘积,从而实现数据的降维。

SVD 的基本思想

  1. 分解矩阵:SVD 将数据矩阵 分解为三个矩阵的乘积。第一个矩阵 包含了数据的主成分方向,第二个矩阵 包含了奇异值,这些奇异值表示了各个主成分的重要性,而第三个矩阵 进一步描述了数据在这些主成分上的分布。

  2. 提取主成分:通过 SVD,我们可以识别出哪些主成分在数据中最为重要。主成分是数据的主要方向,而奇异值则表示这些方向上的变异程度。较大的奇异值意味着对应的主成分在数据中占据了更大的变异量。

  3. 降维:在降维过程中,我们通常选择前几个主要的主成分(即奇异值较大的部分),忽略那些对数据变异贡献较小的部分。通过这种方式,我们可以将数据从高维空间映射到一个较低维的空间,同时尽量保留数据的主要特征。

实现示例

        以下代码展示了如何使用 SVD 来进行数据的奇异值分解,并提取主成分:

import numpy as np
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt# 生成示例数据
X, _ = make_blobs(n_samples=300, centers=3, random_state=42)# 进行奇异值分解
U, Sigma, Vt = np.linalg.svd(X, full_matrices=False)# 打印奇异值
print("奇异值:", Sigma)# 选择前两个主成分进行降维
X_reduced = np.dot(X, Vt.T[:, :2])# 可视化降维后的数据
plt.scatter(X_reduced[:, 0], X_reduced[:, 1])
plt.title("降维后的数据")
plt.xlabel("主成分 1")
plt.ylabel("主成分 2")
plt.show()

        在上述代码中,我们首先生成了一些示例数据,然后对这些数据进行 SVD。通过提取前两个主要的主成分,我们将数据从原始高维空间降维到二维空间,并将结果进行可视化。这种方法使得我们可以在低维空间中更直观地观察和分析数据。

结语

        在本系列文章中,我们探讨了多种机器学习技术,从监督学习中的AdaBoost梯度提升回归到无监督学习中的K均值聚类Mini-Batch K均值以及高斯混合模型(GMM)。此外,我们还深入讨论了主成分分析(PCA)奇异值分解(SVD)的降维技术。

        AdaBoost梯度提升都展示了如何通过加权和迭代提升弱学习器的性能,使得最终模型更具预测能力。与之相比,K均值GMM则提供了无监督的聚类方法,帮助我们从数据中发现隐藏的模式和结构。PCASVD则是强大的降维工具,通过线性变换减少数据的维度,同时保留主要信息,提升计算效率。

        这些技术各有优缺点,选择合适的算法取决于具体的问题和数据特点。对于复杂的分类问题,增强型方法如AdaBoost梯度提升可能更为有效,而对于探索数据结构或简化数据分析任务,无监督方法如K均值GMM和降维技术如PCASVD则是强有力的工具。理解和掌握这些方法将有助于我们更好地应对实际中的各种数据分析和机器学习挑战。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(23):奇异值分解(SVD)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135673

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统