AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介

本文主要是介绍AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介

在深度学习领域,优化算法是至关重要的一部分。其中,随机梯度下降法(Stochastic Gradient Descent,SGD)是最为常用且有效的优化算法之一。本篇将介绍SGD的背景和在深度学习中的重要性,解释SGD相对于传统梯度下降法的优势和适用场景,并提供详细的示例说明。

1. SGD背景和重要性

随机梯度下降法是一种优化算法,用于训练机器学习模型。在深度学习中,通过最小化损失函数来优化模型参数,SGD是实现这一目标的关键工具之一。具体而言,SGD通过计算每个训练样本的梯度来更新模型参数,从而逐步优化模型。

SGD在深度学习中的重要性体现在以下几个方面:

  • 速度快:相较于传统的梯度下降法,SGD 的计算速度更快。由于每次更新仅考虑一个训练样本,使得SGD更适用于大规模数据集和复杂模型。
  • 能够适应在线学习:SGD适用于在线学习场景,能够实现即时更新模型参数,应对数据流的变化。
  • 避免陷入局部极小值:由于SGD每次更新都是基于单个样本,有助于跳出局部极小值,更有可能找到全局最优解。

2. SGD相对于传统梯度下降法的优势

2.1 速度更快

传统梯度下降法在更新模型参数时需要计算所有训练样本的梯度,这一过程效率较低。相反,SGD每次仅计算单个样本的梯度,使得更新速度更快,适用于大规模数据集和复杂模型。

2.2 适应在线学习

传统梯度下降法通常需要将整个数据集加载到内存中进行计算,不适合在线学习场景。而SGD每次只考虑一个样本,可以实现即时数据更新,适应数据流的变化。

2.3 避免陷入局部极小值

传统梯度下降法容易陷入局部极小值,使得无法达到全局最优解。而SGD每次更新只考虑单个样本,有助于跳出局部极小值,更有可能找到全局最优解。

3. SGD适用场景

SGD适用于以下场景:

  • 大规模数据集:由于SGD每次仅计算单个样本的梯度,适用于大规模数据集。
  • 复杂模型:SGD速度快,适合训练复杂模型。
  • 在线学习:SGD适应数据流的变化,适合在线学习场景。
  • 避免陷入局部极小值:SGD有助于跳出局部极小值,更有可能找到全局最优解。

4. 详细示例说明

为了更好地理解SGD的工作原理,我们以一个简单的线性回归问题为例进行说明。假设我们有一个线性回归模型 y = w x + b y = wx + b y=wx+b,我们的目标是通过训练数据集找到最佳的参数 w w w b b b

首先,我们定义损失函数为均方误差(Mean Squared Error,MSE):
MSE = 1 n ∑ i = 1 n ( y i − ( w x i + b ) ) 2 \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (wx_i + b))^2 MSE=n1i=1n(yi(wxi+b))2
其中, n n n 为样本数量, y i y_i yi x i x_i xi 分别为第 i i i 个样本的真实标签和特征。

接下来,我们使用SGD来优化我们的模型。SGD的更新规则为:
w = w − η ∂ MSE ∂ w w = w - \eta \frac{\partial \text{MSE}}{\partial w} w=wηwMSE
b = b − η ∂ MSE ∂ b b = b - \eta \frac{\partial \text{MSE}}{\partial b} b=bηbMSE
其中, η \eta η 为学习率, ∂ MSE ∂ w \frac{\partial \text{MSE}}{\partial w} wMSE ∂ MSE ∂ b \frac{\partial \text{MSE}}{\partial b} bMSE 分别为损失函数相对于 w w w b b b 的偏导数。

我们通过遍历训练数据集,对每个样本计算损失函数的梯度,并更新参数 w w w b b b。通过多次迭代,逐步优化模型。

5. 结语

随机梯度下降法是深度学习中一种重要且高效的优化算法,具有速度快、能够适应在线学习、避免陷入局部极小值等优势。通过本文的介绍和示例说明,希望读者能够更好地理解SGD的原理和应用场景,为深度学习的学习和实践提供帮助。

这篇关于AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135522

相关文章

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

MySQL 索引简介及常见的索引类型有哪些

《MySQL索引简介及常见的索引类型有哪些》MySQL索引是加速数据检索的特殊结构,用于存储列值与位置信息,常见的索引类型包括:主键索引、唯一索引、普通索引、复合索引、全文索引和空间索引等,本文介绍... 目录什么是 mysql 的索引?常见的索引类型有哪些?总结性回答详细解释1. MySQL 索引的概念2

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499