TensorFlow介绍二-线性回归案例

2024-09-04 05:52

本文主要是介绍TensorFlow介绍二-线性回归案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.案例步骤

1.准备数据集:y=0.8x+0.7  100个样本

2.建立线性模型,初始化w和b变量

3.确定损失函数(预测值与真实值之间的误差),均方误差

4.梯度下降优化损失

二.完整功能代码:

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tfdef linear_regression():"""自实现线性回归:return: None"""# 构造数据X为一百行一列X = tf.random_normal(shape=(100, 1), mean=2, stddev=2)# 真实值,y=x*0.8+0.7,这里X为tf.tensor数据在乘的时候要使用二维数据y_true = tf.matmul(X, [[0.8]]) + 0.7# 使用Variable初始化w,b,因为w和b要参与更新所有要使用变量。trainable是设置这个变量是否参与训练weights = tf.Variable(initial_value=tf.random_normal(shape=(1, 1)),trainable=True)bias = tf.Variable(initial_value=tf.random_normal(shape=(1, 1)),trainable=True)# 构造预测值,使用X乘上更新后的变量w加上by_predict = tf.matmul(X, weights) + bias# 计算均方误差,用真实值减去预测值的平方,因为这是一百个数据,使用要求它的平均值error = tf.reduce_mean(tf.square(y_predict - y_true))# 构建优化器,这里使用的是梯度下降优化误差来更新w和b,0.01是学习率optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(error)# 初始化变量init = tf.global_variables_initializer()with tf.Session() as sess:  # 会话# 运行初始化变量opsess.run(init)# 打印一下初始化的权重和偏置print("随机初始化的权重为%f, 偏置为%f" % (weights.eval(), bias.eval()))# 开始训练,训练的次数越多越接近真实值for i in range(100):sess.run(optimizer)# 打印每一次更新后的权重,偏置,误差print("第%d步的误差为%f,权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))return Noneif __name__ == '__main__':linear_regression()

三.增加其他功能

1.增加命名空间

使代码结构更加清晰,Tensorboard图结构更加清楚,

使用tf.variable_scope方法,里面的名字自己定义

with tf.variable_scope("lr_model"):

2.收集变量

这样更容易观察参数的更新情况 

3.写入事件

使用tensorboard观察,在命令行中切换到事件所在文件目录,使用命令:

tensorboard --logdir="事件所在的文件目录"

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tfdef linear_regression():"""自实现线性回归:return: None"""# 构造数据X为一百行一列with tf.variable_scope("original_data"):  # 表示正在创建数据X = tf.random_normal(shape=(100, 1), mean=2, stddev=2)# 真实值,y=x*0.8+0.7,这里X为tf.tensor数据在乘的时候要使用二维数据y_true = tf.matmul(X, [[0.8]]) + 0.7with tf.variable_scope("linear_model"): # 初始化变量# 使用Variable初始化w,b,因为w和b要参与更新所有要使用变量。trainable是设置这个变量是否参与训练weights = tf.Variable(initial_value=tf.random_normal(shape=(1, 1)),trainable=True)bias = tf.Variable(initial_value=tf.random_normal(shape=(1, 1)),trainable=True)# 构造预测值,使用X乘上更新后的变量w加上by_predict = tf.matmul(X, weights) + biaswith tf.variable_scope("loss"):  # 确定误差# 计算均方误差,用真实值减去预测值的平方,因为这是一百个数据,使用要求它的平均值error = tf.reduce_mean(tf.square(y_predict - y_true))with tf.variable_scope("gd_optimizer"):  # 构建优化器# 构建优化器,这里使用的是梯度下降优化误差来更新w和b,0.01是学习率optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(error)# 收集变量tf.summary.scalar("error", error)tf.summary.histogram("weights", weights)tf.summary.histogram("bias", bias)# 合并变量merge=tf.summary.merge_all()# 初始化变量init = tf.global_variables_initializer()with tf.Session() as sess:  # 会话# 运行初始化变量opsess.run(init)# 打印一下初始化的权重和偏置print("随机初始化的权重为%f, 偏置为%f" % (weights.eval(), bias.eval()))# 创建事件文件,将事件写入到ligdir中的目录中file_writer=tf.summary.FileWriter(logdir="./summary",graph=sess.graph)# 开始训练,训练的次数越多越接近真实值for i in range(100):sess.run(optimizer)# 打印每一次更新后的权重,偏置,误差print("第%d步的误差为%f,权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))# 运行合并变量opsummary=sess.run(merge)file_writer.add_summary(summary,i)return Noneif __name__ == '__main__':linear_regression()

 四.模型的保存和加载

tf.train.Saver(var_list=None,max_to_keep=5)

保存和加载模型(保存文件格式:checkpoint文件)
var_list:指定将要保存和还原的变量。它可以作为一个dict或一个列表传递.
max_to_keep:指示要保留的最近检查点文件的最大数量。创建新文件时,会删除较旧的文件。如果无或0,则保留所有检查点文件。默认为5(即保留最新的5个检查点文件。)

例如

# 指定目录+模型名字
# 保存
saver.save(sess, '/tmp/ckpt/test/myregression.ckpt')
# 加载
saver.restore(sess, '/tmp/ckpt/test/myregression.ckpt')

如果判断模型是否存在,直接指定目录

checkpoint = tf.train.latest_checkpoint("./tmp/model/")saver.restore(sess, checkpoint)

五.命令行参数使用

1.tf.app.flags,它支持应用从命令行接收参数,可以用来指定集训配置等,在tf.app.flags下面各种定义参数的类型

2、 tf.app.flags.,在flags有一个FLAGS标志,它在程序中可以调用到我们

前面具体定义的flag_name

3.通过tf.app.run()启动main(argv)函数

# 定义一些常用的命令行参数
# 训练步数
tf.app.flags.DEFINE_integer("max_step", 0, "训练模型的步数")
# 定义模型的路径
tf.app.flags.DEFINE_string("model_dir", " ", "模型保存的路径+模型名字")# 定义获取命令行参数
FLAGS = tf.app.flags.FLAGS# 开启训练
# 训练的步数(依据模型大小而定)
for i in range(FLAGS.max_step):sess.run(train_op)

六.完整代码

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf# 模型保存
tf.app.flags.DEFINE_string("model_path", "./linear_regression/", "模型保存的路径和文件名")
FLAGS = tf.app.flags.FLAGSdef linear_regression():"""自实现线性回归:return: None"""# 构造数据X为一百行一列with tf.variable_scope("original_data"):  # 表示正在创建数据X = tf.random_normal(shape=(100, 1), mean=2, stddev=2)# 真实值,y=x*0.8+0.7,这里X为tf.tensor数据在乘的时候要使用二维数据y_true = tf.matmul(X, [[0.8]]) + 0.7with tf.variable_scope("linear_model"): # 初始化变量# 使用Variable初始化w,b,因为w和b要参与更新所有要使用变量。trainable是设置这个变量是否参与训练weights = tf.Variable(initial_value=tf.random_normal(shape=(1, 1)),trainable=True)bias = tf.Variable(initial_value=tf.random_normal(shape=(1, 1)),trainable=True)# 构造预测值,使用X乘上更新后的变量w加上by_predict = tf.matmul(X, weights) + biaswith tf.variable_scope("loss"):  # 确定误差# 计算均方误差,用真实值减去预测值的平方,因为这是一百个数据,使用要求它的平均值error = tf.reduce_mean(tf.square(y_predict - y_true))with tf.variable_scope("gd_optimizer"):  # 构建优化器# 构建优化器,这里使用的是梯度下降优化误差来更新w和b,0.01是学习率optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(error)# 收集变量tf.summary.scalar("error", error)tf.summary.histogram("weights", weights)tf.summary.histogram("bias", bias)# 合并变量merge=tf.summary.merge_all()# 初始化变量init = tf.global_variables_initializer()with tf.Session() as sess:  # 会话# 运行初始化变量opsess.run(init)# 打印一下初始化的权重和偏置print("随机初始化的权重为%f, 偏置为%f" % (weights.eval(), bias.eval()))# 创建事件文件,将事件写入到ligdir中的目录中file_writer=tf.summary.FileWriter(logdir="./summary",graph=sess.graph)# 开始训练,训练的次数越多越接近真实值for i in range(100):sess.run(optimizer)# 打印每一次更新后的权重,偏置,误差print("第%d步的误差为%f,权重为%f, 偏置为%f" % (i, error.eval(), weights.eval(), bias.eval()))# 运行合并变量opsummary=sess.run(merge)file_writer.add_summary(summary,i)return Nonedef main(argv):print("这是main函数")print(argv)print(FLAGS.model_path)linear_regression()if __name__ == '__main__':tf.app.run()

都看到这里了,点个赞呗!!!!!

这篇关于TensorFlow介绍二-线性回归案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135184

相关文章

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Spring Boot 整合 SSE(Server-Sent Events)实战案例(全网最全)

《SpringBoot整合SSE(Server-SentEvents)实战案例(全网最全)》本文通过实战案例讲解SpringBoot整合SSE技术,涵盖实现原理、代码配置、异常处理及前端交互,... 目录Spring Boot 整合 SSE(Server-Sent Events)1、简述SSE与其他技术的对

MySQL 临时表与复制表操作全流程案例

《MySQL临时表与复制表操作全流程案例》本文介绍MySQL临时表与复制表的区别与使用,涵盖生命周期、存储机制、操作限制、创建方法及常见问题,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随小... 目录一、mysql 临时表(一)核心特性拓展(二)操作全流程案例1. 复杂查询中的临时表应用2. 临时

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

C#中的Drawing 类案例详解

《C#中的Drawing类案例详解》文章解析WPF与WinForms的Drawing类差异,涵盖命名空间、继承链、常用类及应用场景,通过案例展示如何创建带阴影圆角矩形按钮,强调WPF的轻量、可动画特... 目录一、Drawing 是什么?二、典型用法三、案例:画一个“带阴影的圆角矩形按钮”四、WinForm

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.