基于yolov8的红绿灯目标检测训练与Streamlit部署(代码+教程)

2024-09-04 05:20

本文主要是介绍基于yolov8的红绿灯目标检测训练与Streamlit部署(代码+教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目背景

随着智能交通系统的快速发展,自动驾驶技术逐渐成为研究的热点。在自动驾驶领域中,准确识别道路上的交通信号灯是确保车辆安全行驶的关键技术之一。近年来,深度学习技术的发展为交通信号灯的识别提供了强大的支持。YOLO(You Only Look Once)作为一种高效的物体检测算法,在实时场景下有着广泛的应用。本文将介绍如何使用YOLOv8模型进行红绿灯检测,并结合Streamlit实现一个简单的Web应用。
在这里插入图片描述

YOLOv8 & Streamlit 简介

YOLOv8 简介

YOLOv8是YOLO系列的最新版本,它在继承了前几代YOLO的优点基础上进行了改进,具有更快的速度和更高的精度。YOLOv8采用了统一的架构设计,可以轻松地在不同的任务之间切换,如目标检测、实例分割等。该模型支持多种后端框架,包括PyTorch等。
在这里插入图片描述

特性
  • 统一的架构:YOLOv8提供了一个统一的训练脚本,可以快速地调整模型以适应不同的任务需求。
  • 高性能:相较于之前的版本,YOLOv8在速度与准确性方面都有所提升。
  • 易于部署:YOLOv8支持多种部署方式,包括ONNX格式,使得模型可以在不同平台上运行。
Streamlit 简介

Streamlit是一个用于创建和共享数据应用的开源Python库。它简化了构建交互式数据可视化界面的过程,允许开发者通过简单的Python代码快速搭建功能丰富的Web应用。

数据集

为了训练YOLOv8模型进行红绿灯检测,我们需要一个包含红绿灯图像的数据集。一个合适的公开数据集可以从以下链接下载:

  • Link: [假设的数据集链接]
    在这里插入图片描述

模型训练

复制配置文件

从YOLOv8的GitHub仓库中下载官方提供的配置文件,并根据我们的需求进行调整。例如,我们可以选择一个预训练的基础模型作为起点,并修改类别数以适应红绿灯检测任务。

配置YOLOv8参数

编辑配置文件中的路径设置,指向我们准备好的数据集目录。此外,还需要设置训练相关的参数,如batch size、学习率等。
总共4各类别:
0: Traffic Light-Red Light
1: Traffic Light-Yellow Light
2: Traffic Light-Green Light
3: Traffic Light-Off

train: data_train/images # train images (relative to 'path') 4 images
val: data_valid/images # val images (relative to 'path') 4 images
test: # test images (optional)
nc: 4
# Classes
names:0: Traffic Light-Red Light1: Traffic Light-Yellow Light2: Traffic Light-Green Light3: Traffic Light-Off
挂载数据集

确保数据集能够被模型正确读取。通常,这涉及到将数据集按照训练、验证和测试集分开,并生成相应的.txt文件指示每个集合中图片的位置。
在这里插入图片描述

模型验证

在训练过程中定期保存检查点,并在验证集上评估模型性能。使用诸如mAP(mean Average Precision)这样的指标来衡量模型的有效性。

# Use the model
model.train(data="yolo8.yaml", epochs=120,batch=4)

模型导出及量化

模型量化

为了提高模型在边缘设备上的推理速度,我们可以对其进行量化处理。量化可以减少模型大小并加快推理速度,但可能会牺牲一些精度。

ONNX 推理验证

将训练好的模型转换成ONNX格式,这是一种开放的交换格式,能够在多个平台和框架间进行模型互操作。然后,在ONNX环境中验证模型的准确性和性能。
在这里插入图片描述

Streamlit 部署ONNX模型-web

使用Streamlit创建一个用户界面,用户可以通过上传图片或者输入URL来让模型进行实时的红绿灯检测。通过调用ONNX模型来进行预测,并将结果展示给用户。
在这里插入图片描述

代码

mport numpy as np
import onnxruntime
import cv2
import matplotlib.pyplot as plt target_size = 640.inputs = {}img_path = 'data/data153372/trafficlight/JPEGImages/00009.jpg'
session = onnxruntime.InferenceSession('ppyolov2_infer_quant_dynamic.onnx')
input_names = [input.name for input in session.get_inputs()]
output_names = [output.name for output in session.get_outputs()]
img = cv2.imread(img_path)
origin_shape = img.shape[:2]
# im_scale_y = target_size / float(origin_shape[0])
# im_scale_x = target_size / float(origin_shape[1])
im_scale_x = im_scale_y = 1.0
scale_factor = np.array([[im_scale_y, im_scale_x]]).astype('float32')im = cv2.resize(img,(int(target_size), int(target_size)))
im = im / 255.0
mean = [0.485, 0.456, 0.406]
std =[0.229, 0.224, 0.225]
im = (im - mean) / std
# im = im[:, :, ::-1]
im = np.expand_dims(np.transpose(im, (2, 0, 1)), axis=0)inputs['im_shape'] =  np.array([origin_shape]).astype('float32')
inputs['scale_factor'] = scale_factor
inputs['image'] = im.astype('float32') np_boxes = session.run(output_names, inputs)[0]
expect_boxes = (np_boxes[:, 1] > 0.2) & (np_boxes[:, 0] > -1)
np_boxes = np_boxes[expect_boxes, :]def draw_results(results, img):for result in results:class_id, scores, x_min, y_min, x_max, y_max = resultprint(class_id)cv2.rectangle(img, (x_min, y_min), (x_max, y_max), (255, 0, 255))draw_results(np_boxes, img)
cv2.imwrite('save.jpg', img)
plt.imshow(img)
plt.show()

总结

项目总结

通过上述步骤,我们成功地训练了一个用于红绿灯检测的YOLOv8模型,并且将其部署到了一个由Streamlit构建的简单Web应用中。这不仅展示了深度学习在实际问题中的应用潜力,也为未来的开发提供了基础。

阿利同学的博客
计算机视觉、图像处理、毕业辅导、作业帮助、代码获取请私信

这篇关于基于yolov8的红绿灯目标检测训练与Streamlit部署(代码+教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135112

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS