论斜率优化dp

2024-09-04 03:52
文章标签 dp 优化 斜率

本文主要是介绍论斜率优化dp,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论斜率优化dp

  • 1问题
  • 2暴力算法-线性dp
  • 3斜率优化线性dp
  • 4后记

1问题

如下图
在这里插入图片描述
在这里插入图片描述
看到这题,题面很复杂
其实可以转化为如下问题
在这里插入图片描述
n n n个任务,排成一个有序序列,我们要解决这些任务
总费用是每一个任务的完成时间乘以费用系数求和
每个任务之前需要有一个机器启动时间 s s s
也就是说,一开始的时间为 0 0 0,做每个任务之前要先费 s s s的时间启动机器,做每个任务都需要一定时间,假设在 t i ti ti时刻完成费用系数为 f i fi fi的任务,这个任务的费用为 t i × f i ti \times fi ti×fi
总费用为 ∑ t i × f i \sum ti\times fi ti×fi
但是呢,我们可以把若干个任务并做一个,费用系数,完成耗时都求和,只是不需要多次启动机器了
这一看就是线性dp问题, 5000 5000 5000的数据范围也可以支持 n 2 n^2 n2算法

2暴力算法-线性dp

状态的设置很简单,设 d p i dp_i dpi为做完前 i i i个任务的最短耗时
怎么转移,首先枚举 d p j dp_j dpj
d p j dp_j dpj转移到 d p i dp_i dpi需要加些什么?
首先,加上机器启动时间,我们直接把之后所有的费用系数求和再乘以机器启动时间,这就是无后效性
然后,我们考虑 j + 1 j+1 j+1 i i i的任务合并,所有耗时求和再乘上费用系数求和
因为之前任务已经花费的时间会算到当前任务上,且启动机器时间已经算过了
我们把 1 − i 1-i 1i的所有任务耗时求和乘以费用系数即可
上述内容频繁用到求和,可以使用前缀和优化
这个程序很简单,直接附代码(c++)

#include<bits/stdc++.h>
using namespace std;
int n,s;
int t[114514],c[114514];
long long dp[114514],sumt[114514],sumc[114514];
int main(){memset(dp,0x3f,sizeof(dp));dp[0] = 0;cin>>n>>s;for(int i = 1;i<=n;i++){cin>>t[i]>>c[i];sumt[i] = sumt[i-1]+t[i];sumc[i] = sumc[i-1]+c[i];}for(int i = 1;i<=n;i++){for(int j = 0;j<i;j++){dp[i] = min(dp[i],dp[j]+sumc[i]*sumt[i]+s*sumc[n]-sumc[j]*(sumt[i]+s));}}cout<<dp[n];return 0;
}

你会发现你AC了,算法的复杂度 n 2 n^2 n2,是正确的
但是这是一道蓝题,肯定不止这点

3斜率优化线性dp

我们发现,枚举 i i i必然不可避免,但是枚举 j j j就多余了
我们如果能像单调队列优化dp那样直接省去枚举该多好
从状态转移方程入手
先观察
d p [ i ] = d p [ j ] + s u m c [ i ] ∗ s u m t [ i ] + s ∗ s u m c [ n ] − s u m c [ j ] ∗ ( s u m t [ i ] + s ) dp[i] = dp[j]+sumc[i]*sumt[i]+s*sumc[n]-sumc[j]*(sumt[i]+s) dp[i]=dp[j]+sumc[i]sumt[i]+ssumc[n]sumc[j](sumt[i]+s)
移项得
d p [ j ] = ( s u m t [ i ] + s ) ∗ s u m c [ j ] + d p [ i ] − s u m t [ i ] ∗ s u m c [ i ] − s ∗ s u m c [ n ] dp[j] = (sumt[i]+s)*sumc[j]+dp[i]-sumt[i]*sumc[i]-s*sumc[n] dp[j]=(sumt[i]+s)sumc[j]+dp[i]sumt[i]sumc[i]ssumc[n]
很容易发现, ( s u m t [ i ] + s ) (sumt[i]+s) (sumt[i]+s) ( d p [ i ] − s u m t [ i ] ∗ s u m c [ i ] − s ∗ s u m c [ n ] ) (dp[i]-sumt[i]*sumc[i]-s*sumc[n]) (dp[i]sumt[i]sumc[i]ssumc[n])固定,在枚举 j j j的时候,变化的只有 d p [ j ] dp[j] dp[j] s u m c [ j ] sumc[j] sumc[j],这不就是一次函数吗, y = k x + b y = kx+b y=kx+b,那么,要让dp[i]尽可能小
d p [ j ] dp[j] dp[j] ( s u m t [ i ] + s ) ∗ s u m c [ j ] (sumt[i]+s)*sumc[j] (sumt[i]+s)sumc[j]就要尽量接近
我们试着画图
在这里插入图片描述
哪个点距离一次函数最近就很明显了
那这有啥用呢
我们可以删去部分点了
用不同斜率的直线尝试求解,删去没有用的点
在这里插入图片描述
显然的,一个下凸包,我们动态维护凸包,这样就有了单调性
那么哪个点离直线最近呢,显然是连接两条斜率分别大于和小于当前直线的线段的点
这就可以跑二分了
时间复杂度 n l o g n nlogn nlogn,快了很多
还能再快吗,可以!
我们发现所有费用系数都是正整数, s s s也不变,那么前缀和即 s u m c sumc sumc必然单调递增
直线的斜率也自然是单调递增
这就可以用单调队列维护了,斜率单调递增就行
对于新插入的点,肯定是斜率越小越好,这下动态维护下凸包也可以一并解决
斜率的比较最好交叉相乘,避免误差
附代码(c++)

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 300010;
int n,s;
LL c[N],t[N];
LL dp[N];
int q[N];
int main(){cin>>n>>s;for(int i = 1;i<=n;i++){cin>>t[i]>>c[i];t[i]+=t[i-1];c[i]+=c[i-1];}int hh = 0,tt = 0;dp[0] = 0;for(int i = 1;i<=n;i++){while(hh<tt&&((dp[q[hh+1]])-dp[q[hh]])<=(t[i]+s)*(c[q[hh+1]]-c[q[hh]])){hh++;}int j = q[hh];dp[i] = dp[j]-(t[i]+s)*c[j]+t[i]*c[i]+s*c[n];while(hh<tt&&((dp[q[tt]])-dp[q[tt-1]])*(c[i]-c[q[tt]])>=(dp[i]-dp[q[tt]])*(c[q[tt]]-c[q[tt-1]])){tt--;}q[++tt] = i;}cout<<dp[n];return 0;
}

4后记

斜率优化代表着本蒟蒻动态规划系列作品的结束
之后还会有插头dp,四边形不等式等内容
不过我太蒻了暂时学不会
本文作者是蒟蒻,如有错误请各位神犇指点
森林古猿出品,必属精品,请认准CSDN森林古猿1

这篇关于论斜率优化dp的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134924

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、