解放你的带宽和内存:GZIP在解决Redis大Key方面的应用

2024-09-04 03:04

本文主要是介绍解放你的带宽和内存:GZIP在解决Redis大Key方面的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首发公众号:赵侠客

引用

目前主流HTTP协议接口都是使用JSON格式做数据交换的,JSON数据格式有着结构简单、可读性高、跨平台,易解析等优点,同时也存在着冗余数据会占用非常多的储存空间的问题,这大大增加了JSON格式数据在存储、传输过程中的性能消耗。所以对JSON格式数据压缩后再传输、存储就变的非常的有价值,如对JSON格式数据使用GZIP压缩算法可以实现90%左右的压缩率,更小的空间可以节省存储成本和降低传输带宽成本,本文介绍GZIP压缩算法在优化Redis使用大KEY字段中的应用,通过简单压缩可以节省88%的内存空间和带宽资源。

HTTP协议开启GZIP

HTTP协议标准中是直接支持GZIP压缩算法的,通过响应头Content-Encoding: gzip来表明响应内容使用了GZIP压缩,当客户端收到数据后会使用GZIP算法对Body内容进行解压。

RFC 1952 - IETF(互联网工程任务组)标准化的Gzip文件格式规范,

RFC 2616 - HTTP 1.1 协议规范,其中包括对 Content-Encoding 头的定义

在Nginx中可以通过 gzip on开启GZIP压缩功能:

gzip on;
gzip_types text/plain text/css application/json application/javascript text/xml application/xml application/xml+rss text/javascript;

在Springboot中可以通过server.compression.enabled开启GZIP压缩功能:

server:port: 80compression:enabled: truemime-types:  application/javascript,text/css,application/json,application/xml,text/html,text/xml,text/plainmin-response-size: 2KB
  • enabled,开启或关闭
  • mime-types,压缩的数据类型
  • min-response-size,最小压缩大小

测试GZIP

为了测试开启GZIP前后的对比效果我们写一个简单的接口:

@GetMapping("/list")
public ResponseEntity<ApiResult> list() {return renderOk(getData());
}

我们返回1000条JSON格式的用户信息:


private List<UserVo> getData() {return IntStream.range(1, 1000).mapToObj(x -> new UserVo(x,x+"+email@q63.com",x+"_公众号",x+"_赵侠客")).collect(Collectors.toList());
}
@Data
@AllArgsConstructor
public class UserVo {private Integer id;private String username;private String email;private String trueName;
}

在未开启GZIP前接口返回数据的大小是92.8KB, Content-Encoding为空,在开启GZIP后接口返回的数据大小为11.5KB,Content-Encoding为gzip,接口返回数量降低了88%。
开启GZIP前后对比

当然我们也可以在接口中通过手动添加content-encoding响应头,然后通过手动调用GZIPOutputStream对返回数据进行GZIP压缩:

@GetMapping("/gzip")
public void gzip(HttpServletResponse response) throws IOException {response.setContentType("application/json;charset=utf-8");response.setHeader("content-encoding", "gzip");try (GZIPOutputStream gzipOutputStream = new GZIPOutputStream(response.getOutputStream())) {IOUtils.write(JsonUtils.toJson(getData()), gzipOutputStream);}
}

Redis缓存压缩

为了增加接口的响应速度我们通常会使用Redis当缓存,基本逻辑是先查Redis有没有数据如果有直接返回,如果没有会查数据库,然后再存入Redis,以下是一个简单的使用Redis当缓存的接口:

@Resource
private RedissonClient redissonClient;
public static final String REDIS_KEY = "REDIS_KEY";@GetMapping("/redis")
public void redis(HttpServletResponse response) throws IOException {RBucket<String> bucket = redissonClient.getBucket(REDIS_KEY);String data = bucket.get();if (data == null) {data=JsonUtils.toJson(getData());redissonClient.getBucket(REDIS_KEY).set(data,100L, TimeUnit.SECONDS);}response.setContentType("application/json");IOUtils.write(data, response.getOutputStream());
}

我们分析一下这样个接口的基本数据流:

  • 第一次从数据库服务器查出92.8KB的数据传输到WEB服务器中
  • 将92.8KB的数据从WEB服务器传输到Redis服务器中
  • 后面如果命中缓存将92.8KB数据从Redis服务器传输到WEB服务器
  • 最后将92.8KB数据从WEB服务器返回给用户浏览器

使用Redis当缓存加速接口

使用ZIP优化Redis缓存:


public static final String GZIP_REDIS_KEY = "GZIP_REDIS_KEY";@GetMapping("/gzipRedis")
public void gzipRedis(HttpServletResponse response) throws IOException {RBucket<byte[]> bucket = redissonClient.getBucket(GZIP_REDIS_KEY);byte[] data = bucket.get();if (data == null) {String json=JsonUtils.toJson(getData());try (ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();GZIPOutputStream gzipOutputStream = new GZIPOutputStream(byteArrayOutputStream)) {IOUtils.write(json, gzipOutputStream, String.valueOf(StandardCharsets.UTF_8));gzipOutputStream.finish();data= byteArrayOutputStream.toByteArray();redissonClient.getBucket(GZIP_REDIS_KEY).set(data,100L, TimeUnit.SECONDS);}}response.setContentType("application/json");response.setHeader("content-encoding", "gzip");IOUtils.write(data, response.getOutputStream());
}

使用GZIP压缩后的缓存接口

我们再分析一下以上使用GZIP压缩后的数据传输:

  • 第一次从数据库服务器查出92.8KB的数据传输到WEB服务器中
  • 将11.5KB的GZIP数据从WEB服务器传输到Redis服务器中
  • 后面命中缓存将11.5KB数据从Redis服务器传输到WEB服务器
  • 最后将11.KB数据从WEB服务器返回给用户浏览器

GZIP压缩后的Redis缓存

单次接口请求好像感觉不到这个 GZIP压缩带来的好处,接下来我们压测一下看看会不会有差距。

压力测试

压测可以使用ab (Apache Benchmark) 工具,ab工具是 Apache HTTP server 的一部分,在 macOS使用Homebrew包管理器可以快速安装上ab :

brew install httpd
ab -V
ab -n 100 -c 10 http://localhost/list

其中:

  • -n 100 表示总共请求 100 次。
  • -c 10 表示并发 10 个请求。

未压缩走Redis压缩结果:


ab -n 100000 -c 10 http://localhost/redisFinished 100000 requests
Document Length:        92476 bytes
Concurrency Level:      10
Time taken for tests:   194.917 seconds
Complete requests:      100000
Failed requests:        0
Total transferred:      9258100000 bytes
HTML transferred:       9247600000 bytes
Requests per second:    513.04 [#/sec] (mean)
Time per request:       19.492 [ms] (mean)
Time per request:       1.949 [ms] (mean, across all concurrent requests)
Transfer rate:          46384.34 [Kbytes/sec] receivedConnection Times (ms)min  mean[+/-sd] median   max
Connect:        0    8 249.5      0   19514
Processing:     4   12  19.8     10     754
Waiting:        4   11  19.8     10     754
Total:          4   19 250.4     10   19525
Percentage of the requests served within a certain time (ms)50%     1066%     1175%     1180%     1290%     1295%     1598%     2799%    134100%  19525 (longest request)

使用GZIP压缩后走Redis缓存压测结果:

ab -n 100000 -c 10 http://localhost/gzipRedisFinished 100000 requests
Document Length:        11091 bytes
Concurrency Level:      10
Time taken for tests:   194.927 seconds
Complete requests:      100000
Failed requests:        0
Total transferred:      1122000000 bytes
HTML transferred:       1109100000 bytes
Requests per second:    513.01 [#/sec] (mean)
Time per request:       19.493 [ms] (mean)
Time per request:       1.949 [ms] (mean, across all concurrent requests)
Transfer rate:          5621.09 [Kbytes/sec] receivedConnection Times (ms)min  mean[+/-sd] median   max
Connect:        0   12 410.4      0   19608
Processing:     3    7  20.0      4     802
Waiting:        3    7  19.9      4     801
Total:          3   19 410.9      4   19613Percentage of the requests served within a certain time (ms)50%      466%      975%      980%      990%     1095%     1098%     1199%     19100%  19613 (longest request)

总结

对比使用GZIP压缩我们可以得出以下几点:

  • 测试中10万请求在194S完成,缓存时间是100S,服务器端只做了二次查数据库和GZIP压缩然后存数Redis
  • 两次GZIP和之后的数据传输消耗资源可以忽略不计
  • 未压缩10万请求从Redis传输了8.6GB数据到WEB服务器,又从WEB服务器传输8.6GB给用户浏览器,
  • 压缩10万请求从Redis传输了1GB数据到WEB服务器,又从WEB服务器传输1GB给用户浏览器,节省数据传输15.2GB,节省率88%
  • 未压缩数据传输速度达到45M/S,压缩后5.4M/S,节省带宽88%
  • 如果Redis中大JSON都使用GZIP压缩理论上可以节省Redis内存达到88%
  • 因为直接使用gzip返回,所有解压计算在用户浏览器端完成,不消耗服务器CPU资源

请求10万次数据传输流程

综合上所述如里你的Redis缓存中存在大量的大Key,可能先达到瓶颈的不是Redis的读写性能,很可能是你的带宽,此时只需要简单的使用GZIP压缩就能你给不仅节省88%的Redis内存空间还大大减少了数据的传输量和节省了带宽资源,而且还能使用的C端用户的资源来解压,这个ROI是非常高的。

这篇关于解放你的带宽和内存:GZIP在解决Redis大Key方面的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134817

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象