Opencv实现提取卡号(数字识别)

2024-09-04 00:44

本文主要是介绍Opencv实现提取卡号(数字识别),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

直接开始

实行方法

  1. 解析命令行参数:使用argparse库来解析命令行输入,确保用户提供了输入图像和模板图像的路径。

  2. 读取模板图像:使用cv2.imread()函数读取模板图像的路径,并显示原始图像。

  3. 图像预处理

    • 将图像转换为灰度图,以简化后续处理。
    • 应用二值化操作(使用阈值10)将图像转换为二值图像(黑白图),并通过cv2.THRESH_BINARY_INV反转颜色,使前景(数字)为白色,背景为黑色。
    • 显示预处理后的二值图像。
  4. 轮廓检测

    • 使用cv2.findContours()函数在二值图像上检测轮廓。这里只检测外部轮廓,并使用cv2.CHAIN_APPROX_SIMPLE方法来简化轮廓形状。
    • 在原始图像上绘制检测到的轮廓,并显示结果。
  5. 轮廓排序

    • 使用自定义的myutils.sort_contours()函数对检测到的轮廓进行排序,这里假设该函数按照从左到右的顺序排序轮廓。

自定义的myutils库

import cv2def sort_contours(cnts, method='left to-right'):reverse = Falsei = 0if method == 'right-to-left' or method == 'bottom-to-top':reverse = Trueif method == 'top-to-bottom' or method == 'bottom-to-top':i = 1boundingBoxes = [cv2.boundingRect(c) for c in cnts](cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),key=lambda b: b[1][i], reverse=reverse))return cnts, boundingBoxesdef resize(image,width=None,height=None ,inter=cv2.INTER_AREA):dim = None(h, w) = image.shape[:2]if width is None and height is None:return imageif width is None:r = height / float(h)dim = (int(w * r), height)else:r = width / float(w)dim = (width, int(h * r))resized = cv2.resize(image, dim, interpolation=inter)  # 默认为cV2.INTER_AREA,即面积插值,适用于缩放图像。return resized
  1. 数字模板提取

    • 遍历排序后的轮廓,对每个轮廓计算其外接矩形,并裁剪出相应的区域(ROI,Region of Interest)。
    • 将每个裁剪出的ROI区域缩放到固定大小(57x88),以便于后续与输入图像中的数字进行匹配。
    • 将每个缩放后的ROI存储到digits字典中,其中键为轮廓的索引,值为对应的数字模板图像。

接下来,你可能会想要使用这些数字模板与输入图像中的数字进行匹配,以确定输入图像中每个数字的具体值。这通常涉及到模板匹配技术,如使用cv2.matchTemplate()函数。

  • 读取输入图像。
  • 对输入图像进行类似的预处理步骤。
  • 在输入图像上检测可能的数字区域。
  • 对每个检测到的数字区域,使用提取的模板进行匹配,以确定其值。
  • 根据识别出的数字进行进一步的处理或分析(如确定信用卡类型等)。
import argparse
import cv2
import myutilsap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,help="path to input image")
ap.add_argument("-t", "--template", required=True,help="path to template OCR-A image")
args = vars(ap.parse_args())#创建ArgumentParser对象来解析命令行参数。
#添加两个必需的参数:-i/--image(输入图像路径)和-t/--template(模板图像路径)。
#使用parse_args()解析命令行输入,并将结果转换为字典存储在args中。FIRST_NUMBER = {"3": "American Express","4": "Visa","5": "MasterCard","6": "Discover Card"
}
#定义一个字典,将信用卡号码的首位数字映射到对应的信用卡类型。def cv_show(name, img):cv2.imshow(name, img)cv2.waitKey(0)
#一个简单的函数,用于在窗口中显示图像,并等待用户按键。img = cv2.imread(args["template"])
cv_show('img', img)ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv_show('ref', ref)
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
cv_show('ref', ref)
# 计算轮廓:cv2.findcontours()函数接受的参数为二值图,
# 即黑白的(不是灰度图)CV2.RETR_EXTERNAL只检测外轮廓,
# CV2.CHAIN_APPROX_SIMPLE只保留终点坐标
_, refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, refCnts, -1, (0, 0, 255), 3)
cv_show('img', img)#使用findContours函数检测二值图像中的轮廓。
#在原始图像上绘制检测到的轮廓。
#假设myutils.sort_contours函数存在,并按从左到右的顺序对轮廓进行排序。注意这里[0]可能是为了处理#sort_contours返回值的格式,具体取决于该函数的实现。
#refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0]digits = {}
for (i, c) in enumerate(refCnts):  # 遍历每一个轮廓(x, y, w, h) = cv2.boundingRect(c)  # 计算外接矩形并且resize成合适大小roi = ref[y:y + h, x:x + w]roi = cv2.resize(roi, (57, 88))  # 缩放到指定的大小digits[i] = roi  # 每一个数字对应每一个模板
#遍历排序后的轮廓。
#对每个轮廓,计算其外接矩形,并裁剪出相应的区域(ROI)。
#将每个ROI缩放到固定大小(57x88)。
#将缩放后的ROI存储在digits字典中,键为轮廓的索引

代码效果:

这篇关于Opencv实现提取卡号(数字识别)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134515

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S