机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文)

本文主要是介绍机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完整的论文代码见文章末尾 以下为核心内容和部分结果

摘要

机器学习方法在电池寿命预测中的应用主要包括监督学习、无监督学习和强化学习等。监督学习方法通过构建回归模型或分类模型,直接预测电池的剩余寿命或健康状态。无监督学习方法则通过聚类分析和降维技术,识别电池数据中的潜在模式和特征。强化学习方法通过构建动态决策模型,在电池运行过程中不断优化预测策略和调整参数。上述方法不仅可以提高预测精度,还可以在一定程度上降低对电池内部复杂机制的依赖。

近年来,研究人员在基于机器学习的锂离子电池剩余寿命预测方面取得了许多重要进展。例如,利用长短期记忆网络(LSTM)、支持向量机(SVM)和随机森林(RF)等模型对电池寿命进行预测,取得了较好的效果。这些方法不仅能够捕捉电池运行过程中的复杂动态特性,还能够处理大规模、高维度的数据。然而,如何进一步提高预测精度、降低计算复杂度以及实现模型的实时更新仍然是当前研究中的重要课题。

基于以上背景,本研究旨在综合利用机器学习技术,构建高效的锂离子电池剩余寿命预测模型。通过深入分析不同机器学习算法的特点和适用性,探索数据预处理、特征选择和模型优化等关键技术,最终实现锂离子电池剩余寿命的精确预测和有效管理。

训练过程

数据集

CALCE(Center for Advanced Life Cycle Engineering)电池团队的数据集提供了关于锂离子电池的广泛实验数据,包括连续完全和部分循环、存储、动态驾驶剖面、开路电压(OCV)测量以及阻抗测量。测试的电池具有不同的形态因子(圆柱形、袋式和棱柱形)和化学组成(LCO、LFP和NMC)。

数据集地址如下:

https://calce.umd.edu/battery-data

RNN模型(循环神经网络)

RNN模型在时间序列数据中表现出色,适合处理锂离子电池的周期性充放电数据。

它能够捕捉到数据中的时间依赖关系,比如电池充电、放电过程中特定模式的变化,这对于准确预测电池剩余寿命至关重要。

RNN通过记忆先前时间步的信息,可以在预测过程中考虑到长期依赖,这是传统的前馈神经网络(如MLP)所不具备的优势。

MLP模型(多层感知器)

MLP模型在非时间序列数据上表现良好,可以用于处理电池的静态特征数据,如电池的物理结构、化学成分等。

它通过多层次的非线性变换,能够学习到复杂的特征关系,从而提高对电池寿命的预测精度。

当结合静态特征与动态时间序列数据时,MLP能够在一定程度上弥补RNN在静态特征上的不足。

高斯拟合

高斯过程在机器学习中常用于建模输入和输出之间的复杂关系,特别是当输入数据的分布未知或复杂时。

在锂离子电池剩余寿命预测中,高斯过程可以用来建立输入特征与电池寿命之间的概率模型。

它能够提供对预测结果的不确定性估计,这对于决策制定者来说是一种有价值的信息,尤其是在实时环境监测和预警系统中。

部分代码展示

class Net(nn.Module):def __init__(self, feature_size=8, hidden_size=[16, 8]):super(Net, self).__init__()self.feature_size, self.hidden_size = feature_size, hidden_sizeself.layer0 = nn.Linear(self.feature_size, self.hidden_size[0])self.layers = [nn.Sequential(nn.Linear(self.hidden_size[i], self.hidden_size[i+1]), nn.ReLU()) for i in range(len(self.hidden_size) - 1)]self.linear = nn.Linear(self.hidden_size[-1], 1)def forward(self, x):out = self.layer0(x)for layer in self.layers:out = layer(out)out = self.linear(out) return out
def tain(LR=0.01, feature_size=8, hidden_size=[16,8], weight_decay=0.0, window_size=8, EPOCH=1000, seed=0):mae_list, rmse_list, re_list = [], [], []result_list = []for i in range(4):name = Battery_list[i]train_x, train_y, train_data, test_data = get_train_test(Battery, name, window_size)train_size = len(train_x)print('sample size: {}'.format(train_size))setup_seed(seed)model = Net(feature_size=feature_size, hidden_size=hidden_size)model = model.to(device)optimizer = torch.optim.Adam(model.parameters(), lr=LR, weight_decay=weight_decay)criterion = nn.MSELoss()test_x = train_data.copy()loss_list, y_ = [0], []for epoch in range(EPOCH):X = np.reshape(train_x/Rated_Capacity, (-1, feature_size)).astype(np.float32)y = np.reshape(train_y[:,-1]/Rated_Capacity,(-1,1)).astype(np.float32)X, y = torch.from_numpy(X).to(device), torch.from_numpy(y).to(device)output= model(X)loss = criterion(output, y)optimizer.zero_grad()              # clear gradients for this training steploss.backward()                    # backpropagation, compute gradientsoptimizer.step()                   # apply gradientsif (epoch + 1)%100 == 0:test_x = train_data.copy() #每100次重新预测一次point_list = []while (len(test_x) - len(train_data)) < len(test_data):x = np.reshape(np.array(test_x[-feature_size:])/Rated_Capacity, (-1, feature_size)).astype(np.float32)x = torch.from_numpy(x).to(device)pred = model(x) # 测试集 模型预测#pred shape为(batch_size=1, feature_size=1)next_point = pred.data.numpy()[0,0] * Rated_Capacitytest_x.append(next_point)#测试值加入原来序列用来继续预测下一个点point_list.append(next_point)#保存输出序列最后一个点的预测值y_.append(point_list)#保存本次预测所有的预测值loss_list.append(loss)mae, rmse = evaluation(y_test=test_data, y_predict=y_[-1])re = relative_error(y_test=test_data, y_predict=y_[-1], threshold=Rated_Capacity*0.7)print('epoch:{:<2d} | loss:{:<6.4f} | MAE:{:<6.4f} | RMSE:{:<6.4f} | RE:{:<6.4f}'.format(epoch, loss, mae, rmse, re))if (len(loss_list) > 1) and (abs(loss_list[-2] - loss_list[-1]) < 1e-6):breakmae, rmse = evaluation(y_test=test_data, y_predict=y_[-1])re = relative_error(y_test=test_data, y_predict=y_[-1], threshold=Rated_Capacity*0.7)mae_list.append(mae)rmse_list.append(rmse)re_list.append(re)result_list.append(y_[-1])return re_list, mae_list, rmse_list, result_list

在这里插入图片描述

部分结果展示

在这里插入图片描述

预测数据(青色虚线)与测试数据(蓝色实线)高度吻合,说明模型能够较准确地预测电池容量的衰减。在大多数放电周期范围内,预测值与实际值基本重合,特别是在前600个放电周期内,预测效果较好。在800个放电周期之后,虽然有一些偏差,但总体趋势仍然一致。

论文 代码 获取方式

点这里 只需要一点点辛苦费,不需要你跑模型,都是ipynb文件。

在这里插入图片描述

这篇关于机器学习项目——基于机器学习(RNN LSTM 高斯拟合 MLP)的锂离子电池剩余寿命预测方法研究(代码/论文)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134367

相关文章

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6