最近点对问题搞不懂?一篇文章就够了

2024-09-03 21:36

本文主要是介绍最近点对问题搞不懂?一篇文章就够了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标题:你以为找最近点对只是暴力计算?不,分治算法才是真正的王牌!

你以为最近点对问题就是简单的“比比看谁最近”?但你知道吗,很多人用了暴力解法,认为两两比较再选出最小距离就行了!表面上看,这确实是最直接的思路,但你若是真这么做,恭喜你,成功入坑!这种 (O(n^2)) 的算法可不是你想要的,尤其是在竞赛场上,那简直是拖后腿!在今天的这篇文章里,我们要来打破这个误解,揭开真正高效解决最近点对问题的神秘算法——分治法(Divide and Conquer)

为什么暴力法行不通?看清背后的时间复杂度!

最近点对问题很简单,给定一组点,要找到两个最近的点对。这不就是在点与点之间比距离吗?但如果你这么想,那就要小心了!暴力法的时间复杂度是 (O(n^2)),因为要比较每一对点的距离。这种方法在点数少时看起来还不错,但一旦数据量大了,它的效率就让你哭都哭不出来!但分治算法的出现,正是为了解决这一难题。

1. 分治法登场:把“大象”劈开来,效率提升一百倍!

分治法的思路是什么?一言以蔽之:分而治之!就像你切西瓜一样,把问题一分为二,先解决每一部分的小问题,再合并结果。分治法能将时间复杂度降到 (O(n \log n)),这可不是简单的一点点优化,而是质的飞跃!到底是怎么做到的呢?我们一步步来看!

步骤拆解:简单五步,步步为营
  1. 排序:从简单入手
    先将所有点按照 x 坐标进行排序(如果有必要,再按照 y 坐标排序)。你可能觉得这跟“比距离”没什么关系,但别急,高手的操作就在这些细节中!

  2. 分治分割:分而治之的第一步,开刀!
    将点集一分为二,分别成为左右两部分。注意了,这里选择的是中位数点,将整个点集分成几乎相等的两部分,这样才能确保后续算法的平衡性!

  3. 递归计算:子问题的解决方案,效率拉满!
    对于左右两部分,分别递归地求解最近点对。别小看这一步,这就是分治法的精髓所在!递归地处理子问题,解决了就可以合并了。

  4. 合并结果:跨区域比较是关键!
    两部分的最小距离可能不在同一部分内,而是跨越中线的。因此,我们需要在左右两部分之间进行一次合并检查,找出左右最近点之间的最小距离。这一步就考验你的理解能力了!此处只需考虑到距离中线不超过 (\delta) 的点,因为更远的就不可能更近。

  5. 巧妙的带宽问题:别让繁琐计算拖慢了你!
    你可能以为跨区域的比较很麻烦,但实际上,我们只需要考虑每个点最多 6 个候选点就行了!为什么?想象一下,这些点在一个 2(\delta) x (\delta) 的矩形区域内,且相隔距离不超过 (\delta)。巧妙的数学证明告诉你,这样的比较效率完全不需要担心。

看了这五步,你可能觉得这听起来依旧很复杂。别急,我们把所有步骤都放进一段代码中,真相就清晰了!

#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>typedef struct {double x, y;
} Point;// 按x坐标排序
int compareX(const void* a, const void* b) {Point* p1 = (Point*)a;Point* p2 = (Point*)b;return (p1->x - p2->x);
}// 按y坐标排序
int compareY(const void* a, const void* b) {Point* p1 = (Point*)a;Point* p2 = (Point*)b;return (p1->y - p2->y);
}// 计算两点之间的欧几里得距离
double distance(Point p1, Point p2) {return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}// 跨越分割线寻找最小距离
double stripClosest(Point strip[], int size, double d) {double min = d;  // 初始化最小距离为 dqsort(strip, size, sizeof(Point), compareY);  // 按 y 坐标排序for (int i = 0; i < size; ++i) {for (int j = i + 1; j < size && (strip[j].y - strip[i].y) < min; ++j) {double dist = distance(strip[i], strip[j]);if (dist < min) {min = dist;}}}return min;
}// 分治法计算最近点对
double closestUtil(Point points[], int n) {if (n <= 3) {double minDist = FLT_MAX;for (int i = 0; i < n; i++) {for (int j = i + 1; j < n; j++) {double dist = distance(points[i], points[j]);if (dist < minDist) {minDist = dist;}}}return minDist;}int mid = n / 2;Point midPoint = points[mid];double dl = closestUtil(points, mid);double dr = closestUtil(points + mid, n - mid);double d = fmin(dl, dr);Point strip[n];int j = 0;for (int i = 0; i < n; i++) {if (fabs(points[i].x - midPoint.x) < d) {strip[j] = points[i];j++;}}return fmin(d, stripClosest(strip, j, d));
}// 最近点对主函数
double closest(Point points[], int n) {qsort(points, n, sizeof(Point), compareX);return closestUtil(points, n);
}// 测试用例
int main() {Point points[] = {{2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}};int n = sizeof(points) / sizeof(points[0]);printf("最近点对的距离: %.6f\n", closest(points, n));return 0;
}

看到了吗?当你掌握了分治法的精髓后,原本看似复杂的步骤就变得有条不紊。这种算法的美感和效率上的提升,可以说是计算几何中的一大经典了。

为什么分治法如此强大?因为它的细节优化无懈可击!

很多人都认为算法的效率提升就是简单的减少计算步骤,但分治法更进一步:它通过数学上的严谨证明,让每一个步骤都没有多余的操作。尤其是在跨区域合并的步骤,很多人会觉得“这一步复杂”,但实际上通过巧妙的数学推导,你会发现这个问题其实变得非常简单!

总结:别再被暴力法给坑了,掌握分治法才是你登顶的钥匙!

最近点对问题不仅仅是计算几何的一个小练习,它揭示了算法优化的深层逻辑。想要在竞赛中拔得头筹?想要在面试中成为闪亮的那颗星?那么你就需要掌握这样的算法,理解它的精髓,用它的威力来打破常规的认知。

还等什么?今天的分享就到这里,赶快动手实践起来吧!我们下次见!

这篇关于最近点对问题搞不懂?一篇文章就够了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1134112

相关文章

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access