Hadoop-balancer执行原理

2024-09-03 16:32
文章标签 原理 执行 hadoop balancer

本文主要是介绍Hadoop-balancer执行原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

核心类在

org.apache.hadoop.hdfs.server.balancer.Balancer

 

均衡算法 伪代码

while(true) {1.获取需要迁移的字节数if(需要迁移字节数 == 0) {return "成功,无需迁移";}2.选择需要迁移的节点if(需要移动的数据 == 0) {return "没有需要移动的块"}3.开始并行迁移4.清空列表5.Thread.sleep(2*conf.getLong("dfs.heartbeat.interval", 3));
}

 

获取所有的data node节点,计算

initNodes(client.getDatanodeReport(DatanodeReportType.LIVE));

initNodes()函数如下:

计算平均使用量long totalCapacity=0L, totalUsedSpace=0L;for (DatanodeInfo datanode : datanodes) {if (datanode.isDecommissioned() || datanode.isDecommissionInProgress()) {continue; // ignore decommissioning or decommissioned nodes}totalCapacity += datanode.getCapacity();totalUsedSpace += datanode.getDfsUsed();}

 

当前集群的平均使用率(是当前使用的空间/总空间*100),注意这个是百分比计算后再乘100的值,不是百分比

this.avgUtilization = ((double)totalUsedSpace)/totalCapacity*100;

 

 

四个队列

1.aboveAvgUtilizedDatanodes(超过集群平均使用率 && 低于集群平均使用率+阀值)

2.overUtilizedDatanodes(超过集群平均使用率+阀值)

3.belowAvgUtilizedDatanodes(低于集群平均使用率 && 超过集群平均使用率-阀值)

4.underUtilizedDatanodes(低于集群平均使用率-阀值)

 

2个参数

overLoadedBytes 超过负载值的字节

underLoadedBytes低于负载值的字节

//注意这里的阈值默认是10D,这里不是百分比计算集群平均使用率如果为0.5不是50%,而相当于0.5%
//所以如果是0.5-10D就变成负数了,一般来说肯定是小于当前节点使用率的,除非当前节点使用率特别大
//比如当前节点使用率为20,则用百分比来说就是使用了20%,这肯定就超于阈值了,于是这个节点的数据
//就需要均衡了
for (DatanodeInfo datanode : datanodes) {if(当前节点使用率 > 集群平均使用率) {if(当前节点使用率 <=(集群平均使用率+阀值) && 当前节点使用率 > 集群平均使用率) {创建一个BalancerDatanodeaboveAvgUtilizedDatanodes.save(当前节点)}else {overUtilizedDatanodes.save(当前节点)overLoadedBytes += (当前节点使用率-集群平均使用率-阀值)*当前节点总数据量/100}}else {创建一个BalancerDatanodeif(当前节点使用率>=(集群平均使用率-阀值) && 当前节点使用率<集群平均使用率) {belowAvgUtilizedDatanodes.save(当前节点)}else {underUtilizedDatanodes.save(当前节点)underLoadedBytes += (集群平均使用率-阀值-当前节点使用率)*当前节点总数据量/100}}
}均衡器只会执行 overUtilizedDatanodes 和 underUtilizedDatanodes队列中的集群

 

 

BalancerDatanode()构造函数

if(当前节点使用率 >= 集群平均使用率+阀值 || 当前节点使用率 <= 集群平均使用率-阀值) {一次移动的数据量 = 阀值*当前节点总容量/100
}
else {一次移动的数据量 = (集群平均使用率-当前节点使用率) * 当前节点总容量/100
}
一次移动的数据量 = min(当前节点剩余使用量,一次移动的数据量)
一次移动的数据量 = (一次移动数据量上限10G,一次移动的数据量)

 

chooseNodes()函数


chooseNodes(true);	 //首先在相同机架中迁移
chooseNodes(false);	 //在不同机架中迁移chooseNodes(boolean onRack) {chooseTargets(underUtilizedDatanodes.iterator(), onRack);chooseTargets(belowAvgUtilizedDatanodes.iterator(), onRack);chooseSources(aboveAvgUtilizedDatanodes.iterator(), onRack);
}chooseTargets() {for(源节点 source : overUtilizedDatanodes列表) {选择目标节点(source)}
}选择目标节点(source) {while() {1.从候选队列中找到一个节点2.如果这个可转移的数据已经满了continue3.if(在相同机架中转移)4.if(在不同机架中转移)5.创建NodeTask}
}//和chooseTargets函数类似
chooseSources() {for(目标节点 target : underUtilizedDatanodes) {选择源节点()}
}选择源节点(target) {while() {1.从候选队列中找到一个节点2.如果这个节点可转移的数据已经满了continue3.if(在相同机架中转移)4.if(在不同机架中转移)5.创建NodeTask}
}控制台或者日志上会显示  Decided to move 3.55 GB bytes from source_host:50010 to target_host:50010

 

开始并行迁移数据

    for (Source source : sources) {futures[i++] = dispatcherExecutor.submit(source.new ());}

 

BlockMoveDispatcher线程

1.选择要迁移的节点 chooseNextBlockToMove()
2.if(要迁移的节点 != null) {//启动数据迁移,创建一个新线程发送接收数据scheduleBlockMove()}
3.获取block列表,继续下一轮迁移

 

发送和接收数据块的dispatch()函数

//使用阻塞IO的方式发送数据并接收返回的结果sock.connect(NetUtils.createSocketAddr(target.datanode.getName()), HdfsConstants.READ_TIMEOUT);sock.setKeepAlive(true);out = new DataOutputStream( new BufferedOutputStream(sock.getOutputStream(), FSConstants.BUFFER_SIZE));sendRequest(out);in = new DataInputStream( new BufferedInputStream(sock.getInputStream(), FSConstants.BUFFER_SIZE));receiveResponse(in);bytesMoved.inc(block.getNumBytes());

 

这篇关于Hadoop-balancer执行原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133451

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u