OpenCV颜色空间转换(1)颜色空间转换函数cvtColor()的使用

2024-09-03 13:12

本文主要是介绍OpenCV颜色空间转换(1)颜色空间转换函数cvtColor()的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

将图像从一个颜色空间转换到另一个颜色空间。

此函数将输入图像从一个颜色空间转换到另一个颜色空间。在进行 RGB 颜色空间之间的转换时,应显式指定通道的顺序(RGB 或 BGR)。请注意,在 OpenCV 中,默认的颜色格式通常称为 RGB,但实际上它是 BGR(字节顺序相反)。因此,在标准(24 位)彩色图像中,第一个字节将是 8 位的蓝色组件,第二个字节将是绿色,第三个字节将是红色。第四、第五和第六个字节将是第二个像素(首先是蓝色,然后是绿色,最后是红色),依此类推。

R、G 和 B 通道值的传统范围是:

  • 0 到 255 对于 CV_8U 图像
  • 0 到 65535 对于 CV_16U 图像
  • 0 到 1 对于 CV_32F 图像

在线性变换的情况下,范围无关紧要。但在非线性变换的情况下,输入的 RGB 图像应被归一化到适当的值范围以获得正确的结果,例如,在进行 RGB → Luv* 转换时。例如,如果您有一个直接从 8 位图像转换而来的 32 位浮点图像,并且没有任何缩放,则其值范围将是 0…255 而不是函数假定的 0…1。因此,在调用 cvtColor 之前,您需要先将图像缩小:

img *= 1./255;
cvtColor(img, img, COLOR_BGR2Luv);

如果您使用 cvtColor 函数处理 8 位图像,转换过程中会损失一些信息。对于许多应用而言,这种损失可能不会被注意到,但在需要全色彩范围的应用中或在执行某个操作前后需要转换图像的应用中,建议使用 32 位图像。

如果转换增加了 alpha 通道,其值将被设置为对应通道范围的最大值:对于 CV_8U 为 255,对于 CV_16U 为 65535,对于 CV_32F 为 1。

函数原型


void cv::cvtColor	
(InputArray 	src,OutputArray 	dst,int 	code,int 	dstCn = 0 
)	

参数

  • 参数src i输入图像:8 位无符号、16 位无符号(CV_16UC…)或单精度浮点。
  • 参数dst 输出图像,大小和深度与 src 相同。
  • 参数code 颜色空间转换代码(参见 ColorConversionCodes)。
  • 参数dstCn 目标图像中的通道数。如果该参数为 0,则通道数会根据 src 和 code 自动推断。

代码示例

#include <opencv2/opencv.hpp>
#include <iostream>int main(int argc, char** argv)
{// 加载一个图像文件,如果未提供,则使用默认的图像cv::Mat image = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/qiu.jpg");if (image.empty()){std::cerr << "Error: Image cannot be loaded!" << std::endl;return -1;}// 创建一个窗口来显示原始图像cv::namedWindow("Original Image", cv::WINDOW_AUTOSIZE);cv::imshow("Original Image", image);// 将图像从 BGR 转换为灰度cv::Mat grayImage;cv::cvtColor(image, grayImage, cv::COLOR_BGR2GRAY);// 创建一个窗口来显示灰度图像cv::namedWindow("Grayscale Image", cv::WINDOW_AUTOSIZE);cv::imshow("Grayscale Image", grayImage);// 等待用户按键后退出cv::waitKey(0);return 0;
}

运行结果

在这里插入图片描述

这篇关于OpenCV颜色空间转换(1)颜色空间转换函数cvtColor()的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133048

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指