LRU和LFU的实现及优缺点

2024-09-03 12:04
文章标签 实现 优缺点 lru lfu

本文主要是介绍LRU和LFU的实现及优缺点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算机内部有很多使用缓存的地方,缓存能够保证系统的快速运转。但是一个缓存组件是否好用,取决于它的缓存命中率,而命中率又和缓存组件自己的缓存数据淘汰算法息息相关。常用的缓存算法有:FIFO、LRU、LFU。

FIFO

先进先出算法FIFO(First In First Out)的基本思想是:选择最早调入内存的页面淘汰。
类似于队列的思想,所以实现起来也不困难。

我们通过一个操作系统内的页面置换算法例子来说明一下吧:

这里会导致Belady现象:如果FIFO算法将页面容量增大,缺页率反而升高。

原因如下:FIFO算法的置换特征与进程访问内存的动态特征是矛盾的,即被置换的页面并不是进程不会访问的。

LRU

基本原理和场景应用

最近最少使用算法(Least recently used)在vue前端框架的keep-alive内置组件中使用。

我们在使用vue框架使用组件切换,将页面切换前的状态保留在内存中,使用就是LRU算法。

这样做的好处就是:防止浏览器做重复的工作再次渲染页面,从而减少了加载的时间以及减少了计算机的性能消耗,提高了用户的体验。

一个应用场景在计算机底层——页面置换算法,我们现在应用都是从底层算法设计启发而来。比如Java中有一个LinkedHashMap数据结构的实现原理就是使用LRU算法实现的。此数据结构的实现是通过双向链表和哈希表实现的,具体的可以去看LinkedHashMap源码(面试八股文之一)。

举个关于页面置换算法的例子:

更加形象的解释如下:

 

LRU 算法的常见实现

  • 通常使用链表或者栈的数据结构来实现。

  • 当一个数据被访问时,将其移动到链表或栈的顶部,表示它是最近被使用的。

  • 这样,在需要淘汰数据时,只需要从链表或栈的底部移除即可。

  • 例如,在一些数据库缓存系统中,就采用了基于链表的 LRU 实现方式,通过高效的节点移动操作来保持数据的访问顺序。

import java.util.LinkedHashMap;
import java.util.Map;public class LRUCache<K, V> extends LinkedHashMap<K, V> {private int capacity;public LRUCache(int capacity) {super(capacity, 0.75f, true);this.capacity = capacity;}@Overrideprotected boolean removeEldestEntry(Map.Entry<K, V> eldest) {return size() > capacity;}public static void main(String[] args) {LRUCache<Integer, String> lruCache = new LRUCache<>(3);lruCache.put(1, "One");lruCache.put(2, "Two");lruCache.put(3, "Three");System.out.println("LRU Cache: " + lruCache);lruCache.get(1);  // Accessing 1 to make it the most recently usedlruCache.put(4, "Four");  // Adding a new entry, which should trigger LRU evictionSystem.out.println("LRU Cache after eviction: " + lruCache);}
}

 LFU

LFU算法的基本原理

最不频繁使用算法LFU(Least Frequently Used)在执行淘汰元素的时候,会把最不频繁使用的元素直接删掉,若存在队列中两个元素使用频率相同且最低,那就使用最近使用的时间对元素进行排序,很久没有使用直接删掉此元素。
借用Leetcode上面的题解一张图,这张图可以形象的介绍LFU算法的原理:

LFU 算法的常见实现

  • 一般需要维护一个计数器来记录每个数据的访问次数。

  • 当数据被访问时,对应的计数器就会增加。

  • 在淘汰数据时,选择访问次数最少的那些数据进行清理。

  • 一些缓存框架会使用复杂的数据结构,如带有计数器的哈希表,来实现 LFU 算法,以便快速地查找和更新访问次数。


import java.util.LinkedHashMap;
import java.util.Map;public class LFUCache<K, V> {private final int capacity;private final Map<K, V> cache;private final Map<K, Integer> frequency;public LFUCache(int capacity) {this.capacity = capacity;this.cache = new LinkedHashMap<>(capacity, 0.75f, true);this.frequency = new HashMap<>();}public V get(K key) {if (!cache.containsKey(key)) {return null;}int currentFreq = frequency.getOrDefault(key, 0);frequency.put(key, currentFreq + 1);return cache.get(key);}public void put(K key, V value) {if (capacity <= 0) return;if (cache.size() >= capacity) {evictLFU();}cache.put(key, value);frequency.put(key, 1);}private void evictLFU() {K keyToRemove = null;int minFreq = Integer.MAX_VALUE;for (Map.Entry<K, Integer> entry : frequency.entrySet()) {if (entry.getValue() < minFreq) {keyToRemove = entry.getKey();minFreq = entry.getValue();}}if (keyToRemove != null) {cache.remove(keyToRemove);frequency.remove(keyToRemove);}}public static void main(String[] args) {LFUCache<Integer, String> lfuCache = new LFUCache<>(3);lfuCache.put(1, "One");lfuCache.put(2, "Two");lfuCache.put(3, "Three");System.out.println("LFU Cache: " + lfuCache.cache);lfuCache.get(1);  // Accessing 1 to increase its frequencylfuCache.get(2);  // Accessing 2 to increase its frequencylfuCache.put(4, "Four");  // Adding a new entry, which should trigger LFU evictionSystem.out.println("LFU Cache after eviction: " + lfuCache.cache);}
}

 优缺点对比

  1. LRU 算法的优点

    • 实现相对简单,只需要维护一个数据的访问时间顺序即可。

    • 对于突然的访问模式变化能够快速适应,因为它只关注最近的访问情况。

    • 在一些需要快速响应的系统中,LRU 算法能够迅速调整缓存内容,以满足用户的最新需求。

  2. LRU 算法的缺点

    • 可能会受到数据访问的周期性影响。例如,如果一个数据在一段时间内没有被访问,但实际上它在未来可能会再次被频繁使用,LRU 算法可能会因为它的“最近未使用”状态而将其淘汰,导致缓存命中率降低。

    • 对于一些偶尔被访问一次但具有长期价值的数据,LRU 算法也可能会错误地将其淘汰。

  3. LFU 算法的优点

    • 能够更准确地反映数据的长期访问模式,对于那些访问频率稳定的应用场景非常适用。

    • 可以更好地保留那些真正具有高价值的、经常被访问的数据,提高缓存的命中率。

    • 在一些数据访问模式相对固定的系统中,LFU 算法能够提供更稳定的缓存性能。

  4. LFU 算法的缺点

    • 实现相对复杂,需要额外的空间来存储数据的访问次数等信息。

    • 对于访问频率突然变化的情况反应较慢。例如,如果一个冷门数据突然变得热门,LFU 算法可能需要一段时间才能根据其增加的访问次数将其保留在缓存中,在此期间可能会导致用户体验下降。

    • 可能会受到数据访问的初始阶段影响。一个新的数据在开始时访问次数较少,可能会被 LFU 算法过早地淘汰,即使它在未来可能会变得非常重要。

综上所述,LRU 算法和 LFU 算法在缓存淘汰策略中各有优劣,我们需要根据具体的应用场景和需求来选择合适的算法。在实际应用中,也可以根据情况对这两种算法进行适当的优化和调整,或者结合使用,以达到最佳的缓存管理效果。

这篇关于LRU和LFU的实现及优缺点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132921

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too