【数据结构】二叉搜索树的功能实现详解

2024-09-03 06:20

本文主要是介绍【数据结构】二叉搜索树的功能实现详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 二叉搜索树
  • 查找
  • 插入
  • 删除
    • 找到要删除的节点
    • 删除节点
      • 1. 要删除节点的左孩子为空
      • 2. 要删除节点的右孩子为空
      • 3. 要删除的节点的左右孩子都不为空
    • 完整代码

二叉搜索树

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  • 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树image.png|545

其中序遍历是一颗有序的树

查找

二叉搜索树的查找效率非常高

  • 因为二叉搜索树的左边都比我小,右边都比我大
  • 要找比我小的树,就只需要在左树中找,直接最多可以去掉一半的数据
  • 每次到达一个根节点都可以一次性排除掉最多一半的数据

时间复杂度:

  • 最好情况下: O ( l o g N ) O(logN) O(logN)
  • 最坏情况下: O ( N ) O(N) O(N),单分支,将整棵树遍历完

因为这颗二叉搜索树是由一个一个节点构成的,所以先定义出节点

  • 左孩子
  • 右孩子
  • 节点的值
    并定义出头结点
public class BinarySearchTree {  static class TreeNode {  public int val;  public TreeNode left;  public TreeNode right;  public TreeNode(int val) {  this.val = val;  }   }  public TreeNode root = null;  
}

每次去看一下 curval 和我们要找的 key 的大小关系

  1. 如果 cur.val < key,那么就往右边走
  2. 如果 cur.val > key,那么就往左边走
  3. 如果 cur.val = key,那么就找到了|468
public TreeNode search(int key) {  TreeNode cur = root;  while(cur != null) {  if(cur.val < key) {  cur = cur.right;  } else if (cur.val > key) {  cur = cur.left;  }else  return cur;  }    return null;  
}

插入

所有的插入都是插入到了叶子节点

  1. 原来的树为空,则直接插入

  2. 当树不为空时
    若要找到需要插入到的叶子结点的位置,就需要定位到最后父亲节点的叶子结点为 null 的时候。但当 cur 走到叶子结点的时候,就找不到此叶子结点的父亲节点了,所以需要多一个 parent 节点,用来记录当前的父亲节点,好方便随时可以定位到目标叶子结点的父亲节点,后续通过父亲节点进行赋值操作

public void insert(int key) {  TreeNode node = new TreeNode(key);  TreeNode cur = root;  TreeNode parent = null;  while (cur != null) {  if (cur.val < key) {  parent = cur;  cur = cur.right;  } else if (cur.val > key) {  parent = cur;  cur = cur.left;  } else {  return;  }    }    //此循环走完,parent 指向的节点就是需要插入的节点位置的父亲节点  if (parent.val > key) {  parent.left = node;  } else (parent.val < key) {  parent.right = node;  }
}
  • 值相同的时候,不能进行重复插入
  • while 循环结束,cur 指向要插入的叶子结点,parent 指向需要插入的节点的父亲节点
  • 之后对父亲节点和 key 进行比较,选择插入哪一边

删除

删除包含很多种情况

  1. 需要删除的节点的左孩子为空
  2. 需要删除的节点的右孩子为空
  3. 需要删除的节点的左右孩子都不为空

找到要删除的节点

首先需要找到需要删除的节点

public void remove(int key) {  TreeNode cur = root;  TreeNode parent = null;  while (cur != null) {  if(cur.val < key) {  parent = cur;  cur = cur.right;  } else if (cur.val > key) {  parent = cur;  cur = cur.left;  }else {  //此时就是找到了要删除的节点  removeNode(parent,cur);  return;  }    }
}
  • 当执行到 else 的时候,就是找到要删除的节点了
  • 随后完善删除操作==> removeNode

删除节点

1. 要删除节点的左孩子为空

  1. curroot,则 root = cur.right image.png|214

  1. cur 不是 rootcurparent.left,则 parent.left = cur.rightimage.png|297

  1. cur 不是 rootcurparent.right,则 parent.right = cur.rightimage.png|365
// 1.当要删除的节点 cur 的左孩子为空  
if (cur.left == null) {  if (cur == root) {  // 1.1 要删除的 cur 为根节点  root = cur.right;  } else if (cur == parent.left) {  // 1.2 要删除的 cur 是 parent 的左节点  parent.left = cur.right;  } else {  // 1.3 要删除的 cur 是 parent 的右节点  parent.right = cur.right;  }  
}

2. 要删除节点的右孩子为空

  1. curroot,则 root = cur.leftimage.png|208

  1. cur 不是 rootcurparent.left,则 parent.left = cur.leftimage.png|304

  1. cur 不是 rootcurparent.right,则 parent.right = cur.leftimage.png|268
// 2. 要删除的节点 cur 的右孩子为空  
else if (cur.right == null) {  if (cur == root) {  // 2.1 要删除的 cur 是根节点  root = cur.left;  } else if (cur == parent.left) {  // 2.2 要删除的 cur 是 parent 的左节点  parent.left = cur.left;  } else {  // 2.3 要删除的 cur 是 parent 的右节点  parent.right = cur.left;  }  
}

3. 要删除的节点的左右孩子都不为空

需要使用 替换法 进行删除

  1. 在它的右子树中寻找一个最小的节点,用它的值填补到被删除节点中,再来处理该结点的删除问题

    • 因为要删除的节点 cur 左边都比它小,右边都比它大,所以就cur 的右边找到一个最小的节点,然后让目标节点覆盖掉 cur
    • 目标节点不会出现左右孩子都存在的情况。要么两边都为空,要么还存在一个右节点。(既然此节点是最小的,就不可能还有左子树,因为左子树肯定比此节点小)image.png
  2. 在它的左子树中寻找一个最大的节点,用它的值填补到被删除节点中,再来处理该结点的删除问题

    • 此时这个最大值一定是在左树的最右边,意味着它肯定没有右子树

所以找到最小值的特征是:

  • 此节点左子树为空,且一定在 cur 右树最左边
  • 此节点右子树为空,且一定在 cur 左树最右边

寻找右子树的最小值

// 3.1 右数的最小值  
TreeNode t = cur.right;  
TreeNode tp = cur;  
while (t.left != null) {  tp = t;  t = tp.left;  
}  
cur.val = t.val;  
if(t == tp.right) {  
//t 和 tp 在起始步就找到了最小值tp.right = t.right;  
}else{  
//t 和 tp 在继续移动的过程中找到最小值tp.left = t.right;  
}
  • t 是用来定位最小值的,当 t.left == null 的时候,t 就是最小值
  • tp 是用来定位 t 的父节点的,方便后续对节点进行删除(因为节点的删除都要依靠删除节点的父节点进行“改变连接对象”)
  • 在没找到最小节点之前,tpt 一起进行移动
    1. 最开始 tp 在要删除的节点 cur 的位置,tcur 的右节点(起始步)
    2. tp 走到 t 的位置
    3. t 再走向 tp 的左节点(一轮移动结束)
    4. t.left != nulltp 走到 t 的位置
    5. t 再走向 tp 的左节点(一轮移动结束)
  • 如果在起始步就满足 t.left == null 了,则直接进行

完整代码

public void remove(int key) {  TreeNode cur = root;  TreeNode parent = null;  while (cur != null) {  if (cur.val < key) {  parent = cur;  cur = cur.right;  } else if (cur.val > key) {  parent = cur;  cur = cur.left;  } else {  //此时就是找到了要删除的节点  removeNode(parent, cur);  return;  }  }  
}  private void removeNode(TreeNode parent, TreeNode cur) {  // 1.当要删除的节点 cur 的左孩子为空  if (cur.left == null) {  if (cur == root) {  // 1.1 要删除的 cur 为根节点  root = cur.right;  } else if (cur == parent.left) {  // 1.2 要删除的 cur 是 parent 的左节点  parent.left = cur.right;  } else {  // 1.3 要删除的 cur 是 parent 的右节点  parent.right = cur.right;  }  // 2. 要删除的节点 cur 的右孩子为空  } else if (cur.right == null) {  if (cur == root) {  // 2.1 要删除的 cur 是根节点  root = cur.left;  } else if (cur == parent.left) {  // 2.2 要删除的 cur 是 parent 的左节点  parent.left = cur.left;  } else {  // 2.3 要删除的 cur 是 parent 的右节点  parent.right = cur.left;  }  // 3. 要删除的节点的左右孩子都不为空  } else {  // 3.1 右数的最小值  TreeNode t = cur.right;  TreeNode tp = cur;  while (t.left != null) {  tp = t;  t = tp.left;  }  cur.val = t.val;  if(t == tp.right) {  //t 和 tp 在起始步就找到了最小值  tp.right = t.right;  }else{  //t 和 tp 在继续移动的过程中找到最小值  tp.left = t.right;  }  }  
}

这篇关于【数据结构】二叉搜索树的功能实现详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132265

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.