强化学习实践(二):Dynamic Programming(Value \ Policy Iteration)

2024-09-03 03:52

本文主要是介绍强化学习实践(二):Dynamic Programming(Value \ Policy Iteration),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习实践(二):Dynamic Programming(Value \ Policy Iteration)

  • 伪代码
    • Value Iteration
    • Policy Iteration
    • Truncated Policy Iteration
  • 代码
  • 项目地址

伪代码

具体的理解可以看理论学习篇,以及代码中的注释,以及赵老师原著

Value Iteration

在这里插入图片描述

Policy Iteration

在这里插入图片描述

Truncated Policy Iteration

在这里插入图片描述

代码

import numpy as npfrom environment.env import Env
from environment.vis import Visclass DynamicProgramming:"""动态规划的两个方法, 实际都为Truncated Policy Iteration, 具体代码尽量复刻伪代码的逻辑"""def __init__(self, gamma: float = 0.9, env: Env = None, vis: Vis = None, render: bool = False):self.gamma = gammaself.env = envself.vis = visself.render = renderself.policy = np.zeros(shape=(self.env.state_space_size, self.env.action_space_size), dtype=int)self.qtable = np.zeros(shape=self.env.state_space_size, dtype=float)def value_iteration(self, threshold: float = 0.01) -> None:"""计算每个状态动作对的状态动作价值,然后每个状态选择最大的值对应的动作作为自己的策略,并将值作为自己的状态价值根据Contraction Mapping Theorem, qsa的计算公式满足该理论要求,通过迭代不断优化全局状态价值,并找到对应的最优策略:param threshold: 迭代结束的阈值,前后两次迭代后的全局状态价值的欧氏距离相差小于该阈值时代表优化空间已经不大,结束优化:return: None"""differ = np.infwhile differ > threshold:kth_qtable = self.qtable.copy()for state in self.env.state_space:qsa = np.zeros(shape=self.env.action_space_size, dtype=float)for action in self.env.action_space:qsa[action] = self.calculate_qvalue(state, action)self.policy[state] = np.zeros(shape=self.env.action_space_size)self.policy[state, np.argmax(qsa)] = 1self.qtable[state] = np.max(qsa)differ = np.linalg.norm(kth_qtable - self.qtable, ord=1)if self.render:self.vis.show_policy(self.policy)self.vis.show_value(self.qtable)self.vis.show()def policy_iteration(self, policy_threshold: float = 0.01, value_threshold: float = 0.01, steps: int = 10) -> None:"""step 1:从初始策略开始,求解该策略对应的全局状态价值(在这个过程中本来要无穷次迭代得到真正的状态价值,但实际会设置阈值,截断策略迭代算法)step 2:拿到第K次迭代对应的策略求解出的全局状态价值之后,利用该价值作为初始值,再进行全局状态价值优化以及策略优化这个过程其实相较于值迭代比较难理解Q1:In the policy evaluation step, how to get the state value vπk by solving the Bellman equation?A1:x=f(x)这种满足Contraction Mapping Theorem的迭代求解方式(也可以解析解matrix vector form,但是涉及矩阵逆运算会很慢O(n^3))Q2*:In the policy improvement step, why is the new policy πk+1 better than πk?A2:直观上不是很好理解就得利用数学工具了,赵老师原著Chapter4.P73页对比了前后两次迭代证明了Vπk - Vπk+1 < 0Q3*:Why can this algorithm finally converge to an optimal policy?A3:Chapter4.P75页不仅证明了能达到最优,而且引入这种PE过程会收敛得更快,证明了Vπk>Vk,同一个迭代timing,策略迭代状态价值更接近最优:param policy_threshold: 策略阈值:param value_threshold: 全局状态价值阈值:param steps: 截断的最大迭代次数,只用阈值也行,但这样更方便说明:return: None"""policy_differ = np.infself.init_policy()while policy_differ > policy_threshold:kth_policy = self.policy.copy()# step 1: policy evaluationvalue_differ = np.infwhile value_differ > value_threshold and steps > 0:steps -= 1kth_qtable = self.qtable.copy()for state in self.env.state_space:state_value = 0for action in self.env.action_space:state_value += self.policy[state, action] * self.calculate_qvalue(state, action)self.qtable[state] = state_valuevalue_differ = np.linalg.norm(kth_qtable - self.qtable, ord=1)# step 2: policy improvement 相当于上面的PE给下面提供了一个初始状态(对应策略),之前值迭代的时候是全0为初始值value_differ = np.infwhile value_differ > value_threshold:kth_qtable = self.qtable.copy()for state in self.env.state_space:qsa = np.zeros(shape=self.env.action_space_size, dtype=float)for action in self.env.action_space:qsa[action] = self.calculate_qvalue(state, action)self.policy[state] = np.zeros(shape=self.env.action_space_size)self.policy[state, np.argmax(qsa)] = 1self.qtable[state] = np.max(qsa)value_differ = np.linalg.norm(kth_qtable - self.qtable, ord=1)policy_differ = np.linalg.norm(kth_policy - self.policy, ord=1)if self.render:self.vis.show_policy(self.policy)self.vis.show_value(self.qtable)self.vis.show()def init_policy(self) -> None:"""之前值迭代可以不用初始化,因为只对policy进行了更新,现在策略迭代得初始化,因为首先就要利用policy进行PE:return: None"""random_action = np.random.randint(self.env.action_space_size, size=self.env.state_space_size)for state, action in enumerate(random_action):self.policy[state, action] = 1def calculate_qvalue(self, state: int, action: int) -> float:"""计算状态动作价值函数的元素展开式, 这里就能理解为什么环境模型为什么是这样的数据结构:param state: 当前状态:param action: 当前动作:return: 当前的状态动作价值"""qvalue = 0# immediately reward: sigma(r * p(r | s, a))for reward_type in range(self.env.reward_space_size):qvalue += self.env.reward_space[reward_type] * self.env.rewards_model[state, action, reward_type]# next state expected reward : sigma(vk(s') * p(s' | s, a))for next_state in range(self.env.state_space_size):qvalue += self.gamma * self.env.states_model[state, action, next_state] * self.qtable[next_state]return qvalueif __name__ == "__main__":start_state = [0, 0]target_state = [2, 3]forbid = [[2, 2], [2, 1], [1, 1], [3, 3], [1, 3], [1, 4]]model = DynamicProgramming(vis=Vis(target_state=target_state, forbid=forbid),env=Env(target_state=target_state, forbid=forbid),render=True)model.value_iteration()# model.policy_iteration()

项目地址

RL_Algorithms(正在逐步更新多智能体的算法,STAR HOPE(^ - ^)

这篇关于强化学习实践(二):Dynamic Programming(Value \ Policy Iteration)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131949

相关文章

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

springboot依靠security实现digest认证的实践

《springboot依靠security实现digest认证的实践》HTTP摘要认证通过加密参数(如nonce、response)验证身份,避免明文传输,但存在密码存储风险,相比基本认证更安全,却因... 目录概述参数Demopom.XML依赖Digest1Application.JavaMyPasswo

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Java 结构化并发Structured Concurrency实践举例

《Java结构化并发StructuredConcurrency实践举例》Java21结构化并发通过作用域和任务句柄统一管理并发生命周期,解决线程泄漏与任务追踪问题,提升代码安全性和可观测性,其核心... 目录一、结构化并发的核心概念与设计目标二、结构化并发的核心组件(一)作用域(Scopes)(二)任务句柄

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

SpringBoot集成WebService(wsdl)实践

《SpringBoot集成WebService(wsdl)实践》文章介绍了SpringBoot项目中通过缓存IWebService接口实现类的泛型入参类型,减少反射调用提升性能的实现方案,包含依赖配置... 目录pom.XML创建入口ApplicationContextUtils.JavaJacksonUt

MyCat分库分表的项目实践

《MyCat分库分表的项目实践》分库分表解决大数据量和高并发性能瓶颈,MyCat作为中间件支持分片、读写分离与事务处理,本文就来介绍一下MyCat分库分表的实践,感兴趣的可以了解一下... 目录一、为什么要分库分表?二、分库分表的常见方案三、MyCat简介四、MyCat分库分表深度解析1. 架构原理2. 分

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4

k8s搭建nfs共享存储实践

《k8s搭建nfs共享存储实践》本文介绍NFS服务端搭建与客户端配置,涵盖安装工具、目录设置及服务启动,随后讲解K8S中NFS动态存储部署,包括创建命名空间、ServiceAccount、RBAC权限... 目录1. NFS搭建1.1 部署NFS服务端1.1.1 下载nfs-utils和rpcbind1.1