selenium 自动化之四----图形验证码处理

2024-09-03 03:48

本文主要是介绍selenium 自动化之四----图形验证码处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目前登录功能增加了验证码的各种形式,本文主要讲解图形验证码的处理方式
需要安装 pytesseract tesseract-ocr pilow 三方库
安装结束之后,修改pytesseract 这个源文件的tesseract_cmd = ‘/usr/local/Cellar/tesseract/4.0.0/bin/tesseract’
这个绝对路径就是你安装tesseract-ocr 这个执行文件

  • 在本案例中,我们谁到了几个知识点
    • 1 .保存截图信息 使用driver.save_screenshot
    • 2.同时对保存的图片进行截取保存 ,先确定图片的坐标(left top right,height)确认X及Y抽数据,及大小,这里涉及到了两个方法 元素的size 及location 属性
    • 3.然后针对截取的图片进行截取 使用设定对象的crop(left top right,height)进行保存,使用save方法保存即可
    • 4.针对保存的文件,使用了第三方的工具进行解析pytesseract.image_to_string(imgcode).strip()]
# -*- coding: utf-8 -*-
from selenium import webdriver
from time import sleep
import pytesseract
from PIL import ImageEnhance,Image
import re ,os
mobileEmulation = {'deviceName': 'iPhone X'} ##配置浏览器操作模式
options = webdriver.ChromeOptions()
options.add_experimental_option('mobileEmulation', mobileEmulation)
driver = webdriver.Chrome(chrome_options=options)
driver.get('https://m.xxx.cn/regOrlogin')
screenImg="/Users/xxx/Desktop/111.png"
newscreenImg="/Users/xxx/Desktop/code111.png"
driver.find_element_by_class_name('l').click()
sleep(2)
driver.find_element_by_name('mobile').send_keys('185xxxxxxx')
driver.find_element_by_name('password').send_keys('password')
sleep(3)
driver.get_screenshot_as_file(screenImg) # 保存图片
region=Image.open(screenImg)
#打开保存的截图文件
region=(812, 739, 1200, 900)
img=Image.open(screenImg).crop(region).save(screenImg)
img=Image.open(screenImg)
imgcode=img.convert('L')
imgcode = ImageEnhance.Contrast(img)#增强对比度
imgcode.enhance(2.0)	#增加饱和度
imgcode=Image.open(screenImg).crop((0,0,300,200)).save(newscreenImg)
#上边操作imgcode 不能直接save操作,会报错没有该属性方法,所以又用最笨的方式重写了一下crop调用save方法,自动获取坐标代码老是报错,智能用这种人工坐标方式。
imgcode=Image.open(newscreenImg)
print(imgcode)
code = pytesseract.image_to_string(imgcode).strip()
print(code)
driver.find_element_by_name("imgCode").send_keys(code)##赋值验证码的数据,但是识别率实在是不好啊
sleep(10)
driver.find_element_by_class_name("btn_submit").click()driver.quit()

后面研究待完善
上边举例的坐标为手工操作,实际操作中很麻烦,下边解决该问题自动获取验证码的坐标焦点进行截取解析
在这里插入图片描述
说明 假如我们这个验证码分为 ABCD 四个坐标 按照图片的坐标定位如下
A=left = img_code.location[‘x’] #验证码图片的坐标截取
C=top = img_code.location[‘y’]
B=rigth= img_code.size[‘width’]+left
D=heigth=img_code.size[‘height’]+top

from selenium import webdriver
from time import sleep
import pytesseract
from PIL import ImageEnhance,Image
import re ,os
mobileEmulation = {'deviceName': 'iPhone X'}
options = webdriver.ChromeOptions()
options.add_experimental_option('mobileEmulation', mobileEmulation)
driver = webdriver.Chrome(chrome_options=options)
driver.get('https://m.xxxx.cn/regOrlogin')
screenImg="/Users/xxxx/Desktop/111.png"
newscreenImg="/Users/jiahongming/Desktop/code111.png"driver.find_element_by_class_name('l').click()
driver.save_screenshot(screenImg) ##截取屏幕图片保存
sleep(5)
img_code =driver.find_element_by_name("verifyCodeImg") #先查找验证码元素
left = img_code.location['x'] #验证码图片的坐标截取
top = img_code.location['y']
rigth= img_code.size['width']+left
heigth=img_code.size['height']+top
print(left,top,rigth,heigth)
img = Image.open(screenImg)
imge= img.crop((left,top,rigth,heigth))
imge.save(newscreenImg)
code = pytesseract.image_to_string(imge).strip()
print(code)
driver.find_element_by_name("imgCode").send_keys(code)
driver.find_element_by_class_name("btn_submit").click()
driver.quit()

说明:实际环境中,可能出现定位的坐标与实际截取保存的图片坐标有偏差,导致程序无法进行下去
在selenium中location 成像为100%的方式进行定位,所以电脑的显示设置也需要一直,如果出现不一致就会先元素定位坐标偏差。我们也可以不用改电脑的显示设置,可以通过代码进行修改,就是将定位的坐标都乘以哪个显示比例即可,例如,我得电脑显示成像为200%的比例值显示,那么定位坐标代码如下

left = int(code_element.location['x'])*200/100 #验证码图片的坐标截取
top = int(code_element.location['y'])*200/100
rigth= int((code_element.size['width'])*200/100+left) ## 要确认是单独获取的值乘以成像显示比例 
heigth=int((code_element.size['height'])*200/100+top)

这篇关于selenium 自动化之四----图形验证码处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131939

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环