(C++ STL)容器适配器stack、queue、priority_queue的简单实现与源码

2024-09-03 01:36

本文主要是介绍(C++ STL)容器适配器stack、queue、priority_queue的简单实现与源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

容器适配器stack、queue、priority_queue

  • 一、容器适配器
  • 二、deque容器
    • 1.deque的原理介绍
    • 2.deque的特点
    • 3.选择deque作为stack和queue的底层默认容器
  • 三、stack简单实现与源码
  • 四、queue简单实现与源码
  • 五、priority_queue简单实现与源码

以下代码环境为 VS2022 C++。

一、容器适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。

则容器适配器意为:将容器类的接口转换成容器适配器的接口。

C++ STL 的容器适配器有三个,分别是 stack、queue、priority_queue。

二、deque容器

参考:std::deque

1.deque的原理介绍

deque(双端队列):是一种双开口的 " 连续 " 空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为 O(1)。

deque 并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际 deque 类似于一个动态的二维数组。

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其 “ 整体连续 ” 以及随机访问的假象,落在了 deque 的迭代器身上,因此 deque 的迭代器设计就比较复杂。

2.deque的特点

  1. 与 vector 比较,deque 的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是比 vector 高的;

  2. 与 list 比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段;

  3. 但是,deque 有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历。

因此在实际中,需要线性结构时,大多数情况下优先考虑 vector 和 list,deque 的应用并不多。而目前能看到的一个应用就是,STL 用其作为 stack 和 queue 的底层数据结构。

3.选择deque作为stack和queue的底层默认容器

stack 是一种后进先出的特殊线性数据结构,因此只要具有 push_back() 和 pop_back() 操作的线性结构,都可以作为 stack 的底层容器,比如 vector 和 list 都可以。

queue 是先进先出的特殊线性数据结构,只要具有 push_back() 和 pop_front() 操作的线性结构,都可以作为 queue 的底层容器,比如 list。

但是 STL 中对 stack 和 queue 默认选择 deque 作为其底层容器,主要是因为:

  1. stack 和 queue 不需要遍历(因此 stack 和 queue 没有迭代器),只需要在固定的一端或者两端进行操作。

  2. 在 stack 中元素增长时,deque 比 vector 的效率高(扩容时不需要搬移大量数据);queue 中的元素增长时,deque 不仅效率高,而且内存使用率高。

stack 和 queue 结合了 deque 的优点,而完美的避开了其缺陷。

三、stack简单实现与源码

stack 的介绍参考:std::stack

stack 常用接口有:

  1. stack的构造函数
  2. push
  3. pop
  4. top
  5. size
  6. empty

由于 stack 内部开辟、释放空间的操作交给了 deque, 所以 stack 并不用显示的设计 构造函数、析构函数、赋值重载 和 拷贝构造

在 stack.h 中:

#pragma once#include <deque>namespace my
{template<class T, class Container = std::deque<T>>class stack{public:// 编译器自动实现一个默认构造函数,// 即便不显示初始化,也会走初始化列表的,// 而 deque 自己初始化时会走默认构造。//stack(const Container& con = Container())//    :_con(con)//{//    ;//}void push(const T& x){_con.push_back(x);}void pop(){_con.pop_back();}T& top(){return _con.back();}const T& top() const{return _con.back();}size_t size() const{return _con.size();}bool empty() const{return _con.empty();}private:Container _con;};
}

四、queue简单实现与源码

queue 的介绍参考:std::queue

queue 常用接口有:

  1. queue的构造函数
  2. push
  3. pop
  4. back
  5. front
  6. size
  7. empty

queue 同理于 stack,空间开辟和释放交给 deque,不用显示设计上述的四个函数。

在 queue.h 中:

#pragma once#include <deque>namespace my
{template<class T, class Container = std::deque<T>>class queue{public:// 同理于 stack//queue(const Container& con = Container())//    :_con(con)//{//    ;//}void push(const T& x){_con.push_back(x);}void pop(){_con.pop_front();}T& back(){return _con.back();}const T& back() const{return _con.back();}T& front(){return _con.front();}const T& front() const{return _con.front();}size_t size() const{return _con.size();}bool empty() const{return _con.empty();}private:Container _con;};
};

五、priority_queue简单实现与源码

priority_queue 的介绍参考:std::priority_queue

priority_queue(优先级队列)默认使用 vector 作为其底层存储数据的容器,在 vector 上又使用了堆算法将 vector 中元素构造成堆的结构,因此 priority_queue 就是堆(heap),所有需要用到堆的位置,都可以考虑使用 priority_queue。注意:默认情况下 priority_queue 是大堆。

对于堆的介绍与实现细节参考:二叉树顺序结构——堆的结构与实现

priority_queue 常用接口有:

  1. priority_queue的默认构造函数与迭代器参数构造函数
  2. push
  3. pop
  4. top
  5. size
  6. empty

priority_queue 也不用显示实现关于空间开辟与释放的相关函数。

在 priority_queue.hpp 中:

#pragma once#include <vector>
//#include <functional>namespace my
{// 自己实现的仿函数less和greatertemplate<class T>class less{public:bool operator()(const T& number1, const T& number2){return number1 < number2;}};template<class T>class greater{public:bool operator()(const T& number1, const T& number2){return number1 > number2;}};template <class T, class Container = std::vector<T>, class Compare = less<T>>class priority_queue{public:// 因为显示的实现了接受迭代器的初始化,需要显示实现默认构造priority_queue(const Compare& comp = Compare(), const Container& con = Container()):_comp(comp),_con(con){;}template <class InputIterator>priority_queue(InputIterator first, InputIterator last){while (first != last){push(*first);++first;}}void AdjustDown(int parent)     // 向下调整算法{int child = parent * 2 + 1;while (child < _con.size()){if (child + 1 < _con.size() && _comp(_con[child], _con[child + 1])){++child;}if (_comp(_con[parent], _con[child])){std::swap(_con[parent], _con[child]);}else{break;}parent = child;child = parent * 2 + 1;}}void AdjustUp(int child)        // 向上调整算法{int parent = (child - 1) / 2;while (child > 0){if (_comp(_con[parent], _con[child])){std::swap(_con[parent], _con[child]);}else{break;}child = parent;parent = (child - 1) / 2;}}void push(const T& x){_con.push_back(x);AdjustUp(_con.size() - 1);}void pop(){std::swap(_con[0], _con[_con.size() - 1]);_con.resize(_con.size() - 1);AdjustDown(0);}const T& top() const{return _con[0];}T& top(){return _con[0];}size_t size() const{return _con.size();}bool empty() const{return _con.empty();}private:Container _con;Compare _comp;};
};

这篇关于(C++ STL)容器适配器stack、queue、priority_queue的简单实现与源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131655

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1