吃透Redis系列(四):布隆(bloom)过滤器详细介绍

2024-09-03 01:32

本文主要是介绍吃透Redis系列(四):布隆(bloom)过滤器详细介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redis系列文章:

吃透Redis系列(一):Linux下Redis安装

吃透Redis系列(二):Redis六大数据类型详细用法

吃透Redis系列(三):Redis管道,发布/订阅,事物,过期时间 详细介绍

吃透Redis系列(四):布隆(bloom)过滤器详细介绍

吃透Redis系列(五):RDB和AOF持久化详细介绍

吃透Redis系列(六):主从复制详细介绍

吃透Redis系列(七):哨兵机制详细介绍

吃透Redis系列(八):集群详细介绍

吃透Redis系列(九):Redis代理twemproxy和predixy详细介绍

吃透Redis系列(十):Redis内存模型详细介绍

吃透Redis系列(十一):Jedis和Lettuce客户端详细介绍

文章目录

      • 布隆过滤器应用场景
      • 布隆过滤器简介
        • 1,添加数据
        • 2,判断数据是否存在?
        • 3,布隆过滤器优缺点
      • Redis实现布隆过滤器
      • Redis安装布隆过滤器模块
        • 1,访问github地址,下载模块源码
        • 2,执行make编译动态库
        • 3,启动redis加载该动态库
      • Redis使用布隆过滤器
        • 1,常用命令
        • 2,布隆过滤器准确率
        • 3,在项目中使用

本篇博客我们主要介绍如何用Redis实现布隆过滤器,但是在介绍布隆过滤器之前,我们首先介绍一下,为啥要使用布隆过滤器。

布隆过滤器应用场景

  • 解决缓存穿透的问题

一般情况下,先查询缓存是否有该条数据,缓存中没有时,再查询数据库。当数据库也不存在该条数据时,每次查询都要访问数据库,这就是缓存穿透。缓存穿透带来的问题是,当有大量请求查询数据库不存在的数据时,就会给数据库带来压力,甚至会拖垮数据库。

可以使用布隆过滤器解决缓存穿透的问题,把已存在数据的key存在布隆过滤器中。当有新的请求时,先到布隆过滤器中查询是否存在,如果不存在该条数据直接返回;如果存在该条数据再查询缓存查询数据库。

  • 黑名单校验

发现存在黑名单中的,就执行特定操作。比如:识别垃圾邮件,只要是邮箱在黑名单中的邮件,就识别为垃圾邮件。假设黑名单的数量是数以亿计的,存放起来就是非常耗费存储空间的,布隆过滤器则是一个较好的解决方案。把所有黑名单都放在布隆过滤器中,再收到邮件时,判断邮件地址是否在布隆过滤器中即可。

**场景一:**原本有10亿个号码,现在又来了10万个号码,要快速准确判断这10万个号码是否在10亿个号码库中?

解决办法一:将10亿个号码存入数据库中,进行数据库查询,准确性有了,但是速度会比较慢。

解决办法二:将10亿号码放入内存中,比如Redis缓存中,这里我们算一下占用内存大小:10亿*8字节=8GB,通过内存查询,准确性和速度都有了,但是大约8gb的内存空间,挺浪费内存空间的。

**场景二:**购物网站搜索商品,客户在商品搜索栏输入商品,首先要判断此商品在我数据库中存不存在,如果存在才会去执行数据库查询操作!

那么对于类似这种,大数据量集合,如何准确快速的判断某个数据是否在大数据量集合中,并且不占用内存,布隆过滤器应运而生了。

布隆过滤器简介

带着上面的几个疑问,我们来看看到底什么是布隆过滤器。

布隆过滤器:一种数据结构,是由一串很长的二进制向量组成,可以将其看成一个二进制数组。既然是二进制,那么里面存放的不是0,就是1,但是初始默认值都是0。

如下所示:

在这里插入图片描述

1,添加数据

介绍概念的时候,我们说可以将布隆过滤器看成一个容器,那么如何向布隆过滤器中添加一个数据呢?

如下图所示:当要向布隆过滤器中添加一个元素key时,我们通过多个hash函数,算出一个值,然后将这个值所在的方格置为1。

比如,下图hash1(key)=1,那么在第2个格子将0变为1(数组是从0开始计数的),hash2(key)=7,那么将第8个格子置位1,依次类推。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5gSG4wfS-1610099908069)(/home/bobo/.config/Typora/typora-user-images/image-20210108084745498.png)]

2,判断数据是否存在?

知道了如何向布隆过滤器中添加一个数据,那么新来一个数据,我们如何判断其是否存在于这个布隆过滤器中呢?

很简单,我们只需要将这个新的数据通过上面自定义的几个哈希函数,分别算出各个值,然后看其对应的地方是否都是1,如果存在一个不是1的情况,那么我们可以说,该新数据一定不存在于这个布隆过滤器中。

反过来说,如果通过哈希函数算出来的值,对应的地方都是1,那么我们能够肯定的得出:这个数据一定存在于这个布隆过滤器中吗?

答案是否定的,因为多个不同的数据通过hash函数算出来的结果是会有重复的,所以会存在某个位置是别的数据通过hash函数置为的1。

我们可以得到一个结论:布隆过滤器可以判断某个数据一定不存在,但是无法判断一定存在

3,布隆过滤器优缺点

优点:优点很明显,二进制组成的数组,占用内存极少,并且插入和查询速度都足够快。

缺点:随着数据的增加,误判率会增加;还有无法判断数据一定存在;另外还有一个重要缺点,无法删除数据。

Redis实现布隆过滤器

在Redis中是用bitmap来实现布隆过滤器的!

bitmap

我们知道计算机是以二进制位作为底层存储的基础单位,一个字节等于8位。

比如“big”字符串是由三个字符组成的,这三个字符对应的ASCII码分为是98、105、103,对应的二进制存储如下:

在这里插入图片描述

在Redis中,Bitmaps 提供了一套命令用来操作类似上面字符串中的每一个位。

设置值

setbit key offset value
127.0.0.1:6379> set k1 big
OK
127.0.0.1:6379> setbit k1 7 1
(integer) 0
127.0.0.1:6379> get k1
"cig"
127.0.0.1:6379> 

我们知道"b"的二进制表示为0110 0010,我们将第7位(从0开始)设置为1,那0110 0011 表示的就是字符“c”,所以最后的字符 “big”变成了“cig”。

获取位图指定范围值为1的个数

bitcount key [start end]

如果不指定,那就是获取全部值为1的个数。

注意:start和end指定的是字节的个数,而不是位数组下标。

127.0.0.1:6379> set k1 big
OK
127.0.0.1:6379> bitcount k1
(integer) 12
127.0.0.1:6379> bitcount k1 0 0
(integer) 3
127.0.0.1:6379> bitcount k1 0 1
(integer) 7
127.0.0.1:6379> 

Redis安装布隆过滤器模块

1,访问github地址,下载模块源码

https://github.com/RedisBloom/RedisBloom

直接用git clone或则下载zip

git clone https://github.com/RedisBloom/RedisBloom.git
2,执行make编译动态库
cd RedisBloom
make

执行完成之后,会生成一个redisbloom.so动态库

3,启动redis加载该动态库
# 我习惯把该库放到redis的安装目录下,这步骤看自己喜好
sudo cp redisbloom.so /opt/redis/
# 先停掉redis进程
sudo kill -9 pid
# 加载动态库
redis-server --loadmodule /opt/redis/redisbloom.so

出现下图显示加载完成:

在这里插入图片描述

然后就可以用redis-cli客户端来连接测试了

Redis使用布隆过滤器

1,常用命令

bf.add 添加元素

bf.exists 查询元素是否存在

bf.madd 一次添加多个元素

bf.mexists 一次查询多个元素是否存在

127.0.0.1:6379> bf.add k1 1
(integer) 1
127.0.0.1:6379> bf.add k1 2
(integer) 1
127.0.0.1:6379> bf.exists k1 1
(integer) 1
127.0.0.1:6379> bf.exists k1 5
(integer) 0
127.0.0.1:6379>
2,布隆过滤器准确率

在 redis 中有两个值决定布隆过滤器的准确率:

error_rate:允许布隆过滤器的错误率,这个值越低过滤器的位数组的大小越大,占用空间也就越大。

initial_size:布隆过滤器可以储存的元素个数,当实际存储的元素个数超过这个值之后,过滤器的准确率会下降。

redis 中有一个命令可以来设置这两个值:

bf.reserve test 0.01 100 

第一个值是过滤器的名字。

第二个值为 error_rate 的值。

第三个值为 initial_size 的值。

注意必须在add之前使用bf.reserve指令显式创建,如果对应的 key 已经存在,bf.reserve会报错。同时设置的错误率越低,需要的空间越大。如果不使用 bf.reserve,默认的error_rate是 0.01,默认的initial_size是 100。

3,在项目中使用

3.1

引入包

<dependency><groupId>com.redislabs</groupId><artifactId>jrebloom</artifactId><version>1.0.2</version>
</dependency>

JAR包里只有三个类,对连接方式 和 数据类型 的支持都不够

代码:

Client client = new Client(redisProperties.getHost(), redisProperties.getPort(), 10000, 100);
client.add("bobo", "123");
boolean bo = client.exists("bobo", "123");
System.out.println(bo);

3.2:Guava中的BloomFilter

google的guava包中提供了BloomFilter类,直接用的是服务器内存

导入包

<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>22.0</version>
</dependency>

代码:

private static int size = 1000000;
private static BloomFilter<String> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charset.defaultCharset()), size, 0.0001);public void test2() {String bo = "bobo";bloomFilter.put(bo);System.out.println(bloomFilter.mightContain(bo));
}

这篇关于吃透Redis系列(四):布隆(bloom)过滤器详细介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131639

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

如何在Java Spring实现异步执行(详细篇)

《如何在JavaSpring实现异步执行(详细篇)》Spring框架通过@Async、Executor等实现异步执行,提升系统性能与响应速度,支持自定义线程池管理并发,本文给大家介绍如何在Sprin... 目录前言1. 使用 @Async 实现异步执行1.1 启用异步执行支持1.2 创建异步方法1.3 调用