线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解

本文主要是介绍线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性方程组

文章目录

  • 线性方程组
  • 1.齐次线性方程组的求解
    • 1.1 核心要义
    • 1.2 基础解系与线性无关的解向量的个数
    • 1.3 计算使用举例
  • 2. 非齐次线性方程的求解
    • 2.1 非齐次线性方程解的判定
    • 2.2 非齐次线性方程解的结构
    • 2.3 计算使用举例
  • 3.公共解与同解
    • 3.1 两个方程组的公共解
    • 3.2 同解方程组
  • 4.重难点题型总结
    • 4.1 抽象齐次线性方程组的求解
    • 4.1 含有系数的非齐次线性方程组的求解及有条件求全部解问题

解方程组是重点,把握命题侧重点,大致类型如下
(1)已知方程组
同解变形(行变换),讨论参数
(2)抽象方程组
秩,解的结构,推理分析

1.齐次线性方程组的求解

1.1 核心要义

核心要义:零解与非零解

零解情况
齐次线性方程组肯定存在零解,没有无解的情况。
满足r(A)=n,n个列向量都是线性无关的。

有非零解情况
齐次线性方程组有非零解
⇔秩r(A)<n
⇔A的列向量线性相关

解释说明如下:
齐次线性方程组必有零解,这没什么好说的,关键是齐次线性方程组是否存在非零解。
若r(A)<n,则齐次线性方程组存在非零解,A矩阵的秩=列向量组的秩,n就是未知数的个数(列向量的个数),A秩小,说明 在未知数个数的列向量是线性相关的。因为假如线性无关,肯定有r(A)=n。

特别的
1.扁长形的齐次线性方程必有非零解

A-m*n,m<n,则AX=0必有非0解,即r(A)≤r(m)<r(n)

2.A为方阵n*n,AX=0有非0解⇔|A|=0(克莱默法则)

1.2 基础解系与线性无关的解向量的个数

基础解系:解向量的极大线性无关组

线性无关的解向量的个数为:n-r(A),且AX=0的任一个解可以由这n-r(A)个线性无关的解线性表示,如η1η2…ηt是AX=0的解,则k1η1+k2η2+…ktηt是AX=0的解

解释说明:关于n-r(A)怎么来的不需要知道,证明需要零向量相关

总结:
明确AX=0的基础解系三条法则:

  1. η1η2…ηt是AX=0的解
  2. η1η2…ηt线性无关
  3. AX=0的任一解都可以由η1η2…ηt线性表示

如何证明η1η2…ηt是AX=0的基础解系?(小证明)

  1. 验证A.ηi=0
  2. 证明η1η2…ηt线性无关
  3. 说明t=n-r(A)

1.3 计算使用举例

第一步:
第一步肯定把系数矩阵化成行最简形矩阵
第二步:
用n-r(A)明确线性无关解的个数,将列向量划分为主元和自由变量,主元是含1的行最简,自由变量就是非主元了,自由变量的个数就是线性无关解的个数。
将自由变量位置用线性无关的单位向量取代如 ( 1 0 0 1 ) ( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} (1001) 100010001

第三步:
通过计算补全其余部分,第三步有两种方法,推荐第二种,节约时间。

方法实例如下:
在这里插入图片描述

练习如下:
在这里插入图片描述

2. 非齐次线性方程的求解

2.1 非齐次线性方程解的判定

非齐次线性方程的解有两种大的情况:有解和无解
1.有解分为有唯一解和无穷多解
2.无解

AX=b有解,要满足系数矩阵的秩r(A)=其增广矩阵的秩 A ‾ \overline{A} A
AX=b无解,就是r(A)≠ A ‾ \overline{A} A,实际上它们之间的差值只能是1,因为等号右边的常数项,只组成了一个列向量。

AX=b有解情况下
r(A)= A ‾ \overline{A} A=n,有唯一解
r(A)= A ‾ \overline{A} A<n,有无穷多解

2.2 非齐次线性方程解的结构

解的结构是:它的一个解(特解)+其对应的齐次线性方程的解

2.3 计算使用举例

计算使用举例,就讲和齐次线性方程不一样的点,首先是解的结构,多了一个特解,特解的计算有技巧,在自由变量的对应位置,齐次方程写的是单位矩阵,特解写的是 0矩阵,所以,等号右边的b直接就可以抄到特解上。

具体实例:
在这里插入图片描述

3.公共解与同解

3.1 两个方程组的公共解

公共解问题,关于给出两个方程组的基础解系问题,求公共解问题值得深入思考

公共解的概念:如果α是方程组(I)的解,也是方程组(II)的解,则称α是方程组(I)和方程组(II)的公共解。

求公共解问题的题型总结

  • 已知两个方程组,求它们的公共解
  • 已知两个方程组的基础解系,求它们的公共解
  • 已知一个方程组和另一个方程组的基础解系,求它们的公共解

第一类问题,已知两个方程组,求它们的公共解
已知(I)AX=0,(II)BX=0,求它们的公共解
[ A B ] X = 0 \left[\begin{matrix} A \\ B \\ \end{matrix}\right]X = 0 [AB]X=0

解释说明,竖着拼接上求齐次线性方程组即可,此时的解向量既满足AX=0,也满足BX=0

第二类问题,已知两个方程组的基础解系,求它们的公共解

思路梳理如下:
假设方程组(I)的基础解系为k1ξ1+k2ξ2
假设方程组(II)的基础解系为L1η1+L2η2
1.设公共解为r,r=k1ξ1+k2ξ2,r=L1η1+L2η2,注意此时的k1和k2,L1和L2跟基础解系中的k1和k2,L1和L2不是一样的,公共解只是基础解系的一部分,所以基础解系的k和公共解的k肯定不同的,这里只是设的一个未知数的形式。求解该类问题的目标其实就是找到k1,k2或L1,L2它们是什么?也就是它们之间有什么关系?(在添加了约束条件后,这个约束条件就是对面的基础解系)

2.令公共解相同可得到k1ξ1+k2ξ2=L1η1+L2η2,移项得k1ξ1+k2ξ2-L1η1-L2η2=0,得到一个齐次线性方程组,此时它们之间就联系起来了,k1,k2,L1,L2看成未知向量组X,ξ1,ξ2,L1,L1看成A,此时就变成了AX=0,k1,k2,L1,L2就是对应的x1,x2,x3,x4
3.解该齐次线性方程组,设新的系数,整理该齐次线性方程组的同解,得到k1,k2或L1,L2的关系,就能写成此时它们的公共解了。

给出例题:
(2002.4)
在这里插入图片描述

(张宇基础书上例题4.12)
在这里插入图片描述

已知一个方程组和另一个方程组的基础解系,求它们的公共解
求出一个方程组的基础解系,转化为第二类问题。

3.2 同解方程组

若α是(I)的解,则α一定是(II)的解,反之,若α是(II)的解,则必是(I)的解,就称(I)与(II)同解。
在这里插入图片描述

4.重难点题型总结

4.1 抽象齐次线性方程组的求解

例题1:
在这里插入图片描述

例题2:
在这里插入图片描述

例题3:
在这里插入图片描述

4.1 含有系数的非齐次线性方程组的求解及有条件求全部解问题

例题如下:
积累点:
1.含有参数的非齐次方程组的化简成行最简的过程
2.分类讨论

在这里插入图片描述

这篇关于线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131621

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar