C++ | 泛型编程:模板初阶与函数模板深度解析

2024-09-02 22:44

本文主要是介绍C++ | 泛型编程:模板初阶与函数模板深度解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • C++ 泛型编程:模板初阶与函数模板深度解析
      • 1. 泛型编程:实现代码的通用性
      • 2. 函数模板:代码的模具
        • 2.1 什么是函数模板?
        • 2.2 函数模板的格式
        • 2.3 函数模板的原理
        • 2.4 函数模板的实例化
        • 2.5 模板参数的匹配原则
      • 3. 类模板:更进一步的通用性
        • 3.1 类模板的定义
        • 3.2 类模板的实例化
      • 结论:模板的力量

C++ 泛型编程:模板初阶与函数模板深度解析


1. 泛型编程:实现代码的通用性

你是否厌倦了为每种数据类型写一遍相同的代码?例如,实现一个简单的交换函数。虽然函数重载看似解决问题,但实际上,每增加一种类型,代码库就膨胀一点,维护成本也直线上升。

想象,如果有一种方式,能告诉编译器:“嘿,我有个模子,你能根据不同的类型来生成代码吗?”好消息是,C++早已为你准备好了解决方案——模板。


实现一个通用的交换函数呢?

void Swap(int& left, int& right)
{int temp = left;left = right;right = temp;
}
void Swap(double& left, double& right)
{double temp = left;left = right;right = temp;
}
void Swap(char& left, char& right)
{char temp = left;left = right;right = temp;
}

使用函数重载虽然可以实现,但是有一下几个不好的地方:

  • 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增 加对应的函数
  • 代码的可维护性比较低,一个出错可能所有的重载均出错

那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?

2. 函数模板:代码的模具

2.1 什么是函数模板?

函数模板是代码的“模具”,它允许你编写与类型无关的代码,就像一个通用的蓝图,能根据需要生成特定类型的函数。

2.2 函数模板的格式

template<typename T1, typename T2,......,typename Tn>

返回值类型 函数名(参数列表){}

template<typename T>
void Swap(T& left, T& right)
{T temp = left;left = right;right = temp;
}

这里的typename关键词(或可使用class)定义了模板参数,Swap函数接受任何类型T的引用。

2.3 函数模板的原理

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。 所以其实模板就是将本来应该我们做的重复的事情交给了编译器

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应 类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演, 将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此。

2.4 函数模板的实例化
  • 隐式实例化:编译器自动根据实参类型推导模板参数类型。

    template<class T>
    T Add(const T& left, const T& right)
    {return left + right;
    }
    int main()
    {int a1 = 10, a2 = 20;double d1 = 10.0, d2 = 20.0;Add(a1, a2);Add(d1, d2);
    /*
    该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型
    通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有
    一个T,
    编译器无法确定此处到底该将T确定为int 或者 double类型而报错
    注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要
    背黑锅
    Add(a1, d1);
    */
    // 此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化Add(a, (int)d);return 0;
    }
  • 显式实例化:用户在调用时指定模板参数类型。

    int main(void)
    {int a = 10;double b = 20.0;// 显式实例化Add<int>(a, b);return 0;
    }
    
2.5 模板参数的匹配原则
  • 模板函数和非模板函数共存时,优先调用非模板函数,除非模板实例化能提供更好的匹配。

一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这 个非模板函数

// 专门处理int的加法函数
int Add(int left, int right)
{return left + right;
}// 通用加法函数
template<class T>
T Add(T left, T right)
{return left + right;
}
void Test()
{Add(1, 2); // 与非模板函数匹配,编译器不需要特化Add<int>(1, 2); // 调用编译器特化的Add版本
}

对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而 不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板

// 专门处理int的加法函数
int Add(int left, int right)
{return left + right;
}// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{return left + right;
}
void Test()
{Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}

模板函数不允许自动类型转换,但普通函数可以进行自动类型转换


3. 类模板:更进一步的通用性

3.1 类模板的定义

类模板允许类本身成为“模具”,可以为不同的类型实例化不同的类。

template<typename T>
class Stack
{// 类成员定义
};
#include<iostream>
using namespace std;
// 类模版
template<typename T>
class Stack
{
public:Stack(size_t capacity = 4){_array = new T[capacity];_capacity = capacity;_size = 0;}void Push(const T& data);
private:T* _array;size_t _capacity;size_t _size;
};
// 模版不建议声明和定义分离到两个文件.h 和.cpp会出现链接错误,具体原因后面会讲
template<class T>
void Stack<T>::Push(const T& data)
{// 扩容_array[_size] = data;++_size;
}
int main()
{Stack<int> st1; // intStack<double> st2; // doublereturn 0;
}
3.2 类模板的实例化
// Stack是类名,Stack<int>才是类型
Stack<int> st1; // int
Stack<double> st2; // double

实例化后的Stack<int>才是真正的类,而Stack本身只是一种模板,用于生成类。


结论:模板的力量

模板是C++泛型编程的基石,它极大地提升了代码的复用性和维护性。无论是函数模板还是类模板,都能让你的代码更简洁、更高效。掌握模板,你将能驾驭C++的泛型编程,编写出更加灵活和强大的程序。

这篇关于C++ | 泛型编程:模板初阶与函数模板深度解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131281

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码