PolarDB之后,PawSQL如何进一步优化相关标量子查询?

2024-09-02 18:52

本文主要是介绍PolarDB之后,PawSQL如何进一步优化相关标量子查询?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在数据分析领域里,相关标量子查询无疑是一把双刃剑:它功能强大,能解决许多复杂问题,同时又因其复杂性给数据库优化器带来了不小的挑战。当前,只有像Oracle这样的商业数据库巨头在这方面做得相对出色[1],在国产数据库领域,也只有PolarDB对其提供了一定的支持[2]。

除了PolarDB,领先的SQL优化引擎PawSQL也提供了对相关标量子查询进行基于成本的重写优化;此外,PawSQL还会合并查询中的多个类似标量子查询,从而进一步提升标量子查询优化的性能。

图片

🌟 相关标量子查询

在SQL的世界里,相关标量子查询(Correlated Scalar Subquery)是一种强大的工具,它允许子查询依赖于外部查询的列值。这与那些独立于外部查询的非相关标量子查询形成鲜明对比。相关标量子查询通过引用外部查询中的列,为每一行数据计算子查询的结果。

示例

SELECT employee_name
FROM employees e
WHERE salary > (SELECT AVG(salary)FROM employeesWHERE department_id = e.department_id);

在这个例子中,子查询计算每个部门的平均薪资,并与主查询中的salary进行比较,展示了相关标量子查询的强大功能。

🏎️ 性能挑战:数据库优化器的视角

相关标量子查询虽然强大,但也给数据库优化器带来了不小的挑战:

  • 重复计算:在大数据集上,子查询可能会被重复计算,影响性能。

  • 高计算开销:复杂的计算,如聚合函数,可能导致查询性能下降。

  • 查询重写难题:将标量子查询转换为连接操作或其他形式并不总是容易的。

  • 数据依赖性:优化效果依赖于数据分布和表结构,需要优化器灵活应对。

对于相关标量子查询,解关联后的性能并不总是优于关联子查询,所以仅仅依靠启发式算法的重写无法完成性能优化的目标,需要使用基于代价的重写优化策略。目前,只有少数数据库如Oracle[1]和PolarDB[2]实现了这些高级优化技术。

🚀PawSQL:相关标量子查询优化的新境界

PawSQL优化引擎通过以下方式优化相关标量子查询:

  1. 基于代价的重写:支持条件和选择列中的标量子查询重写优化。

  2. 合并重写:合并多个结构相似的标量子查询,减少计算量。

🎯 案例

1. 原始查询:原查询使用了两个相关标量子查询,分别计算每个客户在特定日期的订单总价和订单数量。这种结构通常效率较低,因为需要为每个客户重复执行两个子查询。

SELECT c_custkey,(SELECT SUM(o_totalprice)FROM ORDERSWHERE o_custkey = c_custkey AND o_orderdate = '2020-04-16') AS total,(SELECT COUNT(*)FROM ORDERSWHERE o_custkey = c_custkey AND o_orderdate = '2020-04-16') AS cnt
FROM CUSTOMER

2. 重写后的查询:PawSQL优化引擎将两个相关子查询合并为一个派生表(derived table),然后通过外连接(left outer join)与主查询关联。

SELECT /*QB_1*/ c_custkey, SUM_ AS total, count_ AS cnt
FROM CUSTOMER LEFT OUTER JOIN (SELECT o_custkey, SUM(o_totalprice) AS SUM_, COUNT(*) AS count_FROM ORDERSWHERE o_orderdate = '2020-04-16'GROUP BY o_custkey) AS SQ ON o_custkey = c_custkey

3. 执行计划改进:

  • 通过预先聚合 orders 表的数据,大大减少了需要处理的数据量

  • 消除了重复的子查询执行,将两个子查询合并为一个

  • 使用哈希连接来高效地关联 customer 和聚合后的 orders 数据

图片

4. 性能提升:从执行计划可以看到,优化后,性能提升了1131.26%!

🌟总结

这个优化案例展示了PawSQL对于相关标量子查询重写技术的有效性。通过将多个相关子查询合并为一个派生表,并使用外连接,优化器能够显著减少重复计算和数据访问。通过PawSQL,您可以在MySQL、PostgreSQL、openGauss等数据库上,体验Oracle般的重写优化能力。

🌐 关于PawSQL

PawSQL专注于数据库性能优化自动化和智能化,提供的解决方案覆盖SQL开发、测试、运维的整个流程,广泛支持MySQL、PostgreSQL、OpenGauss、Oracle等主流商用和开源数据库,以及openGauss,人大金仓、达梦等国产数据库,为开发者和企业提供一站式的创新SQL优化解决方案;有效解决了数据库SQL性能及质量问题,提升了数据库系统的稳定性、应用性能和基础设施利用率,为企业节省了大量的运维成本和时间投入。

PawSQL产品家族

  • PawSQL优化平台 - 面向应用开发者,只需三步即可智能优化SQL性能。该平台提供丰富的查询重写功能、智能索引推荐以及自动化性能验证,通过语义等价转换和执行计划分析,最大限度提升SQL执行效率。

  • PawSQL审核平台 - 面向DevOps管控人员,集成完备的审核规则集,能覆盖数据定义语言(DDL)、数据操作语言(DML)、数据查询语言(DQL)等各种SQL语法,审核准确率高达95%,有效提升SQL代码质量。

  • PawSQL巡检平台 - 面向数据库运维人员,具备自动化采集和分析慢查询的能力,并提供专业的SQL优化建议。同时支持对数据库对象如表、索引等进行审核巡检,及时发现并规避潜在风险。

PawSQL往期文章精选

  • SQL性能优化的新视界 - PawSQL Plan Visualizer

  • SQLE、SQM和PawSQL:企业级SQL审核平台的深度评测

  • SQL优化从未如此简单,PawSQL Cloud实践指南

    获取更多关于PawSQL的信息,点击关注PawSQL公众号👇👇👇

这篇关于PolarDB之后,PawSQL如何进一步优化相关标量子查询?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130787

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员