东南大学研究生-数值分析上机题(2023)Python 6 常微分方程数值解法

本文主要是介绍东南大学研究生-数值分析上机题(2023)Python 6 常微分方程数值解法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

常微分方程初值问题数值解

6.1 题目

  1. 编制RK4方法的通用程序;
  2. 编制AB4方法的通用程序(由RK4提供初值);
  3. 编制AB4-AM4预测校正方法通用程序(由RK4提供初值);
  4. 编制带改进的AB4-AM4预测校正方法通用程序(由RK4提供初值);
  5. 对于初值问题
    { y ′ = − x 2 y 2 , 0 ≤ x ≤ 1.5 , y ( 0 ) = 3 \begin{cases} y'=-x^{2}y^{2}, & 0\leq x \leq 1.5,\\ y(0)=3 & \\ \end{cases} {y=x2y2,y(0)=30x1.5,
    取步长 h = 0.1 h=0.1 h=0.1,应用(1)-(4)中的四种方法进行计算,并将计算结果和精确解 y ( x ) = 3 / ( 1 + x 3 ) y(x)=3/(1+x^3) y(x)=3/(1+x3)作比较;
  6. 通过本上机题,你能得到哪些结论?

6.2 Python源程序

# 定义一阶微分方程  
def y_fxy(x, y):  return - (x ** 2) * (y ** 2)  # 定义一阶微分方程的精确解 函数  
def y(x):  return 3 / (1 + x ** 3)  # RK4  
def rk4(y0, h_, x0, xi):  N = int((xi - x0) / h_)  # 运算的次数  x = [x0]  y_pdt = [y0]  # 近似解  y_real = [y0]  err_list = [y0-y0]  for i in range(N):  k1 = y_fxy(x[-1], y_pdt[-1])  k2 = y_fxy(x[-1] + 1 / 2 * h_, y_pdt[-1] + 1 / 2 * h_ * k1)  k3 = y_fxy(x[-1] + 1 / 2 * h_, y_pdt[-1] + 1 / 2 * h_ * k2)  k4 = y_fxy(x[-1] + h_, y_pdt[-1] + h_ * k3)  y_pdt.append(y_pdt[-1] + h_ / 6 * (k1 + 2 * k2 + 2 * k3 + k4))  x.append(x[-1]+h_)  y_real.append(y(x[-1]))  err_list.append(y_real[-1] - y_pdt[-1])  return x, y_pdt, y_real, err_list  # AB4  
def ab4(y0, h_, x0, xi):  N = int((xi - x0) / h_)  # 运算的次数  x, y_pdt, y_real, err_list = rk4(y0, h_, x0, x0 + 3 * h_) # y0给定 y1,y2,y3由RK4得出  for i in range(3, N):  y_pdt.append(y_pdt[-1] + h_ / 24 * \  (55 * y_fxy(x[-1], y_pdt[-1]) - 59 * y_fxy(x[-2], y_pdt[-2]) + \  37 * y_fxy(x[-3], y_pdt[-3]) - 9 * y_fxy(x[-4], y_pdt[-4])))  x.append(x[-1]+h_)  y_real.append(y(x[-1]))  err_list.append(y_real[-1] - y_pdt[-1])  return x, y_pdt, y_real, err_list  # AB4_AM4预测算法  
def ab4_am4(y0, h_, x0, xi):  N = int((xi - x0) / h_)  # 运算的次数  x, y_pdt, y_real, err_list = rk4(y0, h_, x0, x0 + 3 * h_) # y0给定 y1,y2,y3由RK4得出  for i in range(3, N):  y_pdt.append(y_pdt[-1] + h_ / 24 * \  (55 * y_fxy(x[-1], y_pdt[-1]) - 59 * y_fxy(x[-2], y_pdt[-2]) + \  37 * y_fxy(x[-3], y_pdt[-3]) - 9 * y_fxy(x[-4], y_pdt[-4])))  x.append(x[-1] + h_)  y_pdt[-1] = y_pdt[-2] + h_ / 24 * \  (9 * y_fxy(x[-1], y_pdt[-1]) + 19 * y_fxy(x[-2], y_pdt[-2]) - \  5 * y_fxy(x[-3], y_pdt[-3]) + y_fxy(x[-4], y_pdt[-4]))  y_real.append(y(x[-1]))  err_list.append(y_real[-1] - y_pdt[-1])  return x, y_pdt, y_real, err_list  # 改进的AB4_AM4预测算法  
def plus_ab4_am4(y0, h_, x0, xi):  N = int((xi - x0) / h_)  # 运算的次数  x, y_pdt, y_real, err_list = rk4(y0, h_, x0, x0 + 3 * h_) # y0给定 y1,y2,y3由RK4得出  for i in range(3, N):  y_pdt.append(y_pdt[-1] + h_ / 24 * \  (55 * y_fxy(x[-1], y_pdt[-1]) - 59 * y_fxy(x[-2], y_pdt[-2]) + \  37 * y_fxy(x[-3], y_pdt[-3]) - 9 * y_fxy(x[-4], y_pdt[-4])))  x.append(x[-1] + h_)  y_c = y_pdt[-2] + h_ / 24 * \  (9 * y_fxy(x[-1], y_pdt[-1]) + 19 * y_fxy(x[-2], y_pdt[-2]) - \  5 * y_fxy(x[-3], y_pdt[-3]) + y_fxy(x[-4], y_pdt[-4]))  y_pdt[-1] = 251 / 270 * y_c + 19 / 270 * y_pdt[-1]  y_real.append(y(x[-1]))  err_list.append(y_real[-1] - y_pdt[-1])  return x, y_pdt, y_real, err_list  def display(x, y_pdt, y_real, err_list, h_, x0, xi):  N = int((xi - x0) / h_)  # 运算的次数  print("i  xi      yi        y(xi)    y(xi)-yi")  for i in range(N):  print("{:d} {:.2f} {:.8f} {:.8f} {:.8f}".format\  (i+1, x[i+1], y_pdt[i+1], y_real[i+1], err_list[i+1]))  if __name__ == '__main__':  y_0 = 3  # 初值  h = 0.1  # 步长  x_0 = 0  # 区间左端点  x_i = 1.5  # 区间右端点  X, Y_pdt, Y_real, Error = rk4(y_0, h, x_0, x_i)  print("RK4:")  display(X, Y_pdt, Y_real, Error, h, x_0, x_i)  print("RK4整体截断误差:{:.8f}".format(max(list(map(abs, Error)))))  X, Y_pdt, Y_real, Error = ab4(y_0, h, x_0, x_i)  print("AB4:")  display(X, Y_pdt, Y_real, Error, h, x_0, x_i)  print("AB4整体截断误差:{:.8f}".format(max(list(map(abs, Error)))))  X, Y_pdt, Y_real, Error = ab4_am4(y_0, h, x_0, x_i)  print("AB4-AM4预测校正:")  display(X, Y_pdt, Y_real, Error, h, x_0, x_i)  print("AB4-AM4预测矫正整体截断误差:{:.8f}".format(max(list(map(abs, Error)))))  X, Y_pdt, Y_real, Error = plus_ab4_am4(y_0, h, x_0, x_i)  print("改进的AB4-AM4预测校正:")  display(X, Y_pdt, Y_real, Error, h, x_0, x_i)  print("改进的AB4-AM4预测矫正整体截断误差:{:.8f}".format(max(list(map(abs, Error)))))

6.3 程序运行结果

RK4:

RK4:
i  xi      yi        y(xi)    y(xi)-yi
1 0.10 2.99700281 2.99700300 0.00000019
2 0.20 2.97619008 2.97619048 0.00000039
3 0.30 2.92112875 2.92112950 0.00000076
4 0.40 2.81954726 2.81954887 0.00000161
5 0.50 2.66666349 2.66666667 0.00000318
6 0.60 2.46710026 2.46710526 0.00000501
7 0.70 2.23379914 2.23380491 0.00000577
8 0.80 1.98412285 1.98412698 0.00000413
9 0.90 1.73510711 1.73510700 -0.00000012
10 1.00 1.50000581 1.50000000 -0.00000581
11 1.10 1.28701259 1.28700129 -0.00001131
12 1.20 1.09972217 1.09970674 -0.00001542
13 1.30 0.93839746 0.93837973 -0.00001773
14 1.40 0.80130043 0.80128205 -0.00001838
15 1.50 0.68573209 0.68571429 -0.00001780
RK4整体截断误差:0.00001838

AB4:

AB4:
i  xi      yi        y(xi)    y(xi)-yi
1 0.10 2.99700281 2.99700300 0.00000019
2 0.20 2.97619008 2.97619048 0.00000039
3 0.30 2.92112875 2.92112950 0.00000076
4 0.40 2.81838926 2.81954887 0.00115961
5 0.50 2.66467247 2.66666667 0.00199420
6 0.60 2.46520263 2.46710526 0.00190263
7 0.70 2.23307895 2.23380491 0.00072596
8 0.80 1.98495058 1.98412698 -0.00082359
9 0.90 1.73704329 1.73510700 -0.00193629
10 1.00 1.50219455 1.50000000 -0.00219455
11 1.10 1.28876344 1.28700129 -0.00176216
12 1.20 1.10072420 1.09970674 -0.00101746
13 1.30 0.93871050 0.93837973 -0.00033077
14 1.40 0.80113495 0.80128205 0.00014710
15 1.50 0.68533458 0.68571429 0.00037971
AB4整体截断误差:0.00219455

AB4-AM4预测校正:

AB4-AM4预测校正:
i  xi      yi        y(xi)    y(xi)-yi
1 0.10 2.99700281 2.99700300 0.00000019
2 0.20 2.97619008 2.97619048 0.00000039
3 0.30 2.92112875 2.92112950 0.00000076
4 0.40 2.81967843 2.81954887 -0.00012956
5 0.50 2.66687598 2.66666667 -0.00020932
6 0.60 2.46725176 2.46710526 -0.00014650
7 0.70 2.23373141 2.23380491 0.00007350
8 0.80 1.98378670 1.98412698 0.00034028
9 0.90 1.73460744 1.73510700 0.00049956
10 1.00 1.49951594 1.50000000 0.00048406
11 1.10 1.28665714 1.28700129 0.00034415
12 1.20 1.09953315 1.09970674 0.00017360
13 1.30 0.93834252 0.93837973 0.00003721
14 1.40 0.80132737 0.80128205 -0.00004532
15 1.50 0.68579611 0.68571429 -0.00008183
AB4-AM4预测校正整体截断误差:0.00049956

改进的AB4-AM4预测校正:

改进的AB4-AM4预测校正:
i  xi      yi        y(xi)    y(xi)-yi
1 0.10 2.99700281 2.99700300 0.00000019
2 0.20 2.97619008 2.97619048 0.00000039
3 0.30 2.92112875 2.92112950 0.00000076
4 0.40 2.81958771 2.81954887 -0.00003884
5 0.50 2.66671285 2.66666667 -0.00004619
6 0.60 2.46709703 2.46710526 0.00000823
7 0.70 2.23368249 2.23380491 0.00012242
8 0.80 1.98388468 1.98412698 0.00024230
9 0.90 1.73480801 1.73510700 0.00029899
10 1.00 1.49973191 1.50000000 0.00026809
11 1.10 1.28682068 1.28700129 0.00018061
12 1.20 1.09962178 1.09970674 0.00008496
13 1.30 0.93836732 0.93837973 0.00001242
14 1.40 0.80131135 0.80128205 -0.00002930
15 1.50 0.68576045 0.68571429 -0.00004616
改进的AB4-AM4预测校正整体截断误差:0.00029899

6.4 总结感悟

  • 根据数值分析理论推导的结果,RK4、AB4、AB4-AM4预测校正具有4阶精度,而改进的AB4-AM4预测校正具有5阶精度,但是对于该问题来说,比较四种常微分方程数值解法在 [ 0.1 , 1.5 ] [0.1,1.5] [0.1,1.5]上的整体截断误差,则是RK4<改进的AB4-AM4预测校正<AB4-AM4预测校正<AB4,RK4(单步法)的精度要比多步法(AB4、AB4-AM4预测校正、改进的AB4-AM4预测校正)的精度更高;
  • 要根据不同的问题选择合适的数值解法,公式的精度越高不代表实际的求解精度越高;
  • 常微分方程的数值解法是广泛应用的方法,在以后的工程实践与科研之中会有更多的应用.

这篇关于东南大学研究生-数值分析上机题(2023)Python 6 常微分方程数值解法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130375

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装