均值滤波器的原理及实现

2024-09-02 15:38
文章标签 实现 原理 均值 滤波器

本文主要是介绍均值滤波器的原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.均值滤波器

平滑线性空间滤波器的输出是包含在滤波器模板邻域内的像素的简单平均值,也就是均值滤波器。均值滤波器也是低通滤波器,均值滤波器很容易理解,即把邻域内的平均值赋给中心元素。

均值滤波器用来降低噪声,均值滤波器的主要应用是去除图像中的不相关细节,不相关是指与滤波器的模板相比较小的像素区域。模糊图片以便得到感兴趣物体的粗略描述,因此那些较小的物体的灰度就会与背景混合在一起,较大的物体则变的像斑点而易于检测。模板的大小由那些即将融入背景中的物体尺寸决定。

均值滤波器的缺点是存在着边缘模糊的问题。

均值滤波器的模板由标准像素平均和加权平均之分。如下图所示

2 C++实现均值滤波器

#include <iostream>
#include<opencv2/opencv.hpp>void getCount(double *count,int dim)
{int mn=dim*dim;for(int i=0;i<dim*dim;i++){count[i]=1.0/mn;}
}void getCountWeight(double *count,int dim)
{int mn=dim*dim;for(int i=0;i<mn;i++){if(i==mn/2)count[i]=1./2;elsecount[i]=(1/2.)*(1./(mn-1));}
}void meanFilter(cv::Mat &dst,cv::Mat &img,int dim){int channels=img.channels();dst=cv::Mat::zeros(img.size(),img.type());double count[dim*dim]={0};getCountWeight(count,dim);for(int row=0;row<img.rows;row++){for(int col=0;col<img.cols;col++){if(row>=dim/2&&row<img.rows-dim/2&&col>=dim/2&&col<img.cols-dim/2){int c=0;double sum1=0;double sum2=0;double sum3=0;for(int i=row-dim/2;i<=row+dim/2;i++){for(int j=col-dim/2;j<=col+dim/2;j++){if(channels==1){sum1+=count[c]*img.at<uchar>(i,j);}else if(channels==3){sum1+=count[c]*img.at<cv::Vec3b>(i,j)[0];sum2+=count[c]*img.at<cv::Vec3b>(i,j)[1];sum3+=count[c]*img.at<cv::Vec3b>(i,j)[2];}c++;}}if(channels==1){dst.at<uchar>(row,col)=(int)sum1;}else if(channels==3){dst.at<cv::Vec3b>(row,col)[0]=(int)sum1;dst.at<cv::Vec3b>(row,col)[1]=(int)sum2;dst.at<cv::Vec3b>(row,col)[2]=(int)sum3;}}else {if(channels==1)dst.at<uchar>(row, col) = img.at<uchar>(row, col);else if(channels==3){dst.at<cv::Vec3b>(row,col)[0]=img.at<cv::Vec3b>(row,col)[0];dst.at<cv::Vec3b>(row,col)[1]=img.at<cv::Vec3b>(row,col)[1];dst.at<cv::Vec3b>(row,col)[2]=img.at<cv::Vec3b>(row,col)[2];}}}}
}int main() {cv::Mat src=cv::imread("/home/dyf/Documents/数字图像/空间滤波器/Mean-filter/3.png",0);cv::Mat dst,dst1;cv::imshow("src",src);meanFilter(dst,src,3);cv::imshow("dst",dst);cv::blur(src,dst1,cv::Size(3,3));cv::imshow("dst1",dst1);cv::waitKey(0);return 0;
}

3 均值滤波器处理效果

原图像

下图左侧为使用标准均值方法处理的结果,右侧为opencv所带的均值滤波器处理结果

 

原图像:

左侧为带权重均值处理结果(中心位置为0.5,其他的邻域平分0.5)   右侧为标准均值处理结果 

这篇关于均值滤波器的原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130370

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集