C++第四十四弹---Lambda表达式的妙用:高效解决编程中的匿名函数问题

本文主要是介绍C++第四十四弹---Lambda表达式的妙用:高效解决编程中的匿名函数问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】

目录

1 lambda表达式

1.1 C++98中的一个例子

1.2 lambda表达式

1.3 lambda表达式语法

1.4 函数对象与lambda表达式


1 lambda表达式


1.1 C++98中的一个例子


在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法。

代码演示

#include <algorithm>
#include <functional>
int main()
{int array[] = { 4,1,8,5,3,7,0,9,2,6 };// 默认按照小于比较,排出来结果是升序std::sort(array, array + sizeof(array) / sizeof(array[0]));// 如果需要降序,需要改变元素的比较规则,greater为functional头文件中类std::sort(array, array + sizeof(array) / sizeof(array[0]), greater<int>());return 0;
}

运行结果 

如果待排序元素为自定义类型,需要用户定义排序时的比较规则:

商品类 

struct Goods
{string _name; // 名字double _price; // 价格int _evaluate; // 评价// ...Goods(const char* str, double price, int evaluate):_name(str), _price(price), _evaluate(evaluate){}
};

代码演示

// 价格升序
struct ComparePriceLess
{bool operator()(const Goods& gl, const Goods& gr){return gl._price < gr._price;}
};
// 价格降序
struct ComparePriceGreater
{bool operator()(const Goods& gl, const Goods& gr){return gl._price > gr._price;}
};int main()
{vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
3 }, { "菠萝", 1.5, 4 } };// 按照价格升序sort(v.begin(), v.end(), ComparePriceLess());// 按照价格降序sort(v.begin(), v.end(), ComparePriceGreater());
}

运行结果

1.2 lambda表达式

商品类

struct Goods
{string _name; // 名字double _price; // 价格int _evaluate; // 评价// ...Goods(const char* str, double price, int evaluate):_name(str), _price(price), _evaluate(evaluate){}
};

代码演示 

int main()
{vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
3 }, { "菠萝", 1.5, 4 } };// 价格降序sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){return g1._price  > g2._price; });// 评价降序sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){return g1._evaluate > g2._evaluate;});// 评价升序sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){return g1._evaluate < g2._evaluate;});
}

运行结果 

 

上述代码就是使用C++11中的lambda表达式来解决,可以看出lambda表达式实际是一个匿名函
数。 

1.3 lambda表达式语法


lambda表达式书写格式[capture-list] (parameters) mutable -> return-type { statement }
1. lambda表达式各部分说明

  • [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据 [ ] 来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。
  • (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略
  • mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。
  • ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。
  • {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

注意:
在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。 

代码演示 

int main()
{// 最简单的lambda表达式, 该lambda表达式没有任何意义[] {};// 省略参数列表和返回值类型,返回值类型由编译器推导为intint a = 3, b = 4;[=] {return a + 3; };// 各部分都很完善的lambda函数auto add1 = [](int a, int b)->int {return a + b; };cout << add1(1, 2) << endl;// 返回值可以省略auto add2 = [](int a, int b) {return a + b; };cout << add2(1, 2) << endl;// 没有参数,参数列表可以省略auto func = [] {cout << "hello world" << endl; };func();cout << typeid(add1).name() << endl;cout << typeid(add2).name() << endl;cout << typeid(func).name() << endl;
}

运行结果 

add1和add2参数,返回值,返回类型都相同,但是add1和add2的类型是不同的,因此lambda表达式之间不能相互赋值。

通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调用,如果想要直接调用,可借助auto将其赋值给一个变量。


2. 捕获列表说明
捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。

  • [var]:表示值传递方式捕捉变量var
  • [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
  • [&var]:表示引用传递捕捉变量var
  • [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
  • [this]:表示值传递方式捕捉当前的this指针

注意:

  • a. 父作用域指包含lambda函数的语句块
  • b. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。
    • 比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量[&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量
  • c. 捕捉列表不允许变量重复传递,否则就会导致编译错误。
    • 比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复
  • d. 在块作用域以外的lambda函数捕捉列表必须为空。
  • e. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错。
  • f. lambda表达式之间不能相互赋值,即使看起来类型相同(typeid可以查看)

代码演示一

int main()
{int a = 1, b = 2;auto swap1 = [](int& x, int& y){int tmp = x;x = y;y = tmp;};swap1(a, b);// 捕捉列表,给函数使用// 捕捉a b对象给lambda// mutable可以修改传值过来的捕捉对象(日常一般不用)// 因为a b是拷贝过来的,因此不会改变外面的a bauto swap2 = [a,b]() mutable{int tmp = a;a = b;b = tmp;};swap2();// 引用方式捕捉auto swap3 = [&a, &b](){int tmp = a;a = b;b = tmp;};swap3();int* pa = &a, * pb = &b;// 指针方式捕捉,间接auto swap4 = [pa, pb](){int tmp = *pa;*pa = *pb;*pb = tmp;};swap4();return 0;
}

运行结果

代码演示二

int main()
{int a = 1, b = 2, c = 3, d = 4, e = 5;// = 传值捕捉所有对象auto func1 = [=](){return a + b - c * d;};cout << func1() << endl;// 传引用捕捉所有对象auto func2 = [&](){a++;b++;c++;d++;};func2();cout << a << b << c << d << e << endl;// 混合捕捉,传引用捕捉所有对象,但是d e传值捕捉auto func3 = [&, d, e](){a++;b++;//d++;//e++;};func3();cout << a << b << c << d << e << endl;// 混合捕捉,a b传引用,c d传值auto func4 = [&a, &b, c, d](){a++;b++;//c++;//d++;};func4();cout << a << b << c << d << e << endl;return 0;
}

 运行结果

1.4 函数对象与lambda表达式


函数对象,又称为仿函数,即可以像函数一样使用的对象,就是在类中重载了operator()运算符的
类对象。

代码演示

// 函数对象与lambda表达式
class Rate
{
public:Rate(double rate) : _rate(rate){}double operator()(double money, int year){return money * _rate * year;}
private:double _rate;
};
int main()
{// 函数对象double rate = 0.49;Rate r1(rate);r1(10000, 2);// lambdaauto r2 = [=](double monty, int year)->double {return monty * rate * year;};r2(10000, 2);return 0;
}

反汇编 

实际在底层编译器对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的,即:如
果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()。 

这篇关于C++第四十四弹---Lambda表达式的妙用:高效解决编程中的匿名函数问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1130339

相关文章

CentOS 7 YUM源配置错误的解决方法

《CentOS7YUM源配置错误的解决方法》在使用虚拟机安装CentOS7系统时,我们可能会遇到YUM源配置错误的问题,导致无法正常下载软件包,为了解决这个问题,我们可以替换YUM源... 目录一、备份原有的 YUM 源配置文件二、选择并配置新的 YUM 源三、清理旧的缓存并重建新的缓存四、验证 YUM 源

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

VS配置好Qt环境之后但无法打开ui界面的问题解决

《VS配置好Qt环境之后但无法打开ui界面的问题解决》本文主要介绍了VS配置好Qt环境之后但无法打开ui界面的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目UKeLvb录找到Qt安装目录中designer.UKeLvBexe的路径找到vs中的解决方案资源

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结