Wireshark 认识捕获的分析数据包(及各个分层协议的介绍)

2024-09-02 13:18

本文主要是介绍Wireshark 认识捕获的分析数据包(及各个分层协议的介绍),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

综述:认识Wireshark捕获数据包

当我们对Wireshark主窗口各部分作用了解了,学会捕获数据了,接下来就该去认识这些捕获的数据包了。Wireshark将从网络中捕获到的二进制数据按照不同的协议包结构规范,显示在Packet Details面板中。为了帮助用户能够清楚的分析数据,本节将介绍识别数据包的方法。

在Wireshark中关于数据包的叫法有三个术语,分别是帧、包、段。下面通过分析一个数据包,来介绍这三个术语。

一、wireshark三个面板介绍

(在edit->Preference->User info->Layout中可修改面板情况 ):

1、"Pcaket List"面板 (包列表)
Packet list/包列表面板显示所有当前捕捉的包
列表中的每行显示捕捉文件的一个包。如果您选择其中一行,该包得更多情况会显示在"Packet Detail/包详情","Packet Byte/包字节"面板
在分析(解剖)包时,Wireshark会将协议信息放到各个列。 因为高层协议通常会覆盖底层协议,您通常在包列表面板看到的都是每个包的最高层协议描述。(在这里高层是应用层,底层是数据链路层)
2、 "Packet Details"面板(包详情)
"Packet Details/包详情"面板显示当前包(在包列表面板被选中的包)的详情列表。
该面板显示包列表面板选中包的协议及协议字段,协议及字段以树状方式组织。你可以展开或折叠它们。
右击它们会获得相关的上下文菜单。
某些协议字段会以特殊方式显示
3、"Packet Byte"面板(包字节)
面板以16进制转储方式显示当前选择包的数据
通常在16进制转储形式中,左侧显示 包数据偏移量,中间栏以16进制表示,右侧显示为对应的ASCII字符  (包数据偏移量是相对第一个包进行偏移)

二、各行信息如下所示:
  Frame:物理层的数据帧概况。
  Ethernet II:数据链路层以太网帧头部信息。
  Internet Protocol Version 4:互联网层IP包头部信息。
  Transmission Control Protocol:传输层的数据段头部信息,此处是TCP协议。
  Hypertext Transfer Protocol:应用层的信息,此处是HTTP协议。
 
下面分别介绍下,帧、包和段内展开的内容。如下所示:
1、物理层的数据帧概况

   Frame 5: 268 bytes on wire (2144 bits), 268 bytes captured (2144 bits) on interface 0   #5号帧,线路268字节,实际捕获268字节
   Interface id: 0                                                                                       #接口id
   Encapsulation type: Ethernet (1)                                                          #封装类型
   Arrival Time: Jun 11, 2015 05:12:18.469086 中国标准时间                 #捕获日期和时间
   [Time shift for this packet: 0. seconds]
   Epoch Time: 1402449138.469086 seconds
   [Time delta from previous captured frame: 0.025257 seconds]            #此包与前一包的时间间隔
   [Time since reference or first frame: 0.537138 seconds]                      #此包与第一帧的时间间隔
   Frame Number: 5                                                                             #帧序号
   Frame Length: 268 bytes (2144 bits)                                                   #帧长度
   Capture Length: 268 bytes (2144 bits)                                                 #捕获长度
   [Frame is marked: False]                                                                    #此帧是否做了标记:否
   [Frame is ignored: False]                                                                    #此帧是否被忽略:否
   [Protocols in frame: eth:ip:tcp:http]                                                      #帧内封装的协议层次结构
   [Number of per-protocol-data: 2]                                                       
   [Hypertext Transfer Protocol, key 0]
   [Transmission Control Protocol, key 0]
   [Coloring Rule Name: HTTP]                                                                #着色标记的协议名称
   [Coloring Rule String: http tcp.port == 80]                                            #着色规则显示的字符串
 

2、数据链路层以太网帧头部信息

   Ethernet II, Src: Giga-Byt_c8:4c:89 (1c:6f:65:c8:4c:89), Dst: Tp-LinkT_f9:3c:c0 (6c:e8:73:f9:3c:c0)
   Destination: Tp-LinkT_f9:3c:c0 (6c:e8:73:f9:3c:c0)                                  #目标MAC地址
   Source: Giga-Byt_c8:4c:89 (1c:6f:65:c8:4c:89)                                        #源MAC地址
   Type: IP (0x0800)
 

3、互联网层IP包头部信息

    Internet Protocol Version 4, Src: 192.168.0.104 (192.168.0.104), Dst: 61.182.140.146 (61.182.140.146)
    Version: 4                                                                                        #互联网协议IPv4
    Header length: 20 bytes                                                                     #IP包头部长度
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))         #差分服务字段
    Total Length: 254                                                                                #IP包的总长度
    Identification: 0x5bb5 (23477)                                                              #标志字段
    Flags: 0x02 (Don't Fragment)                                                                #标记字段
    Fragment offset: 0                                                                                #分的偏移量
    Time to live: 64                                                                                    #生存期TTL
    Protocol: TCP (6)                                                                                  #此包内封装的上层协议为TCP
    Header checksum: 0x52ec [validation disabled]                                      #头部数据的校验和
    Source: 192.168.0.104 (192.168.0.104)                                                    #源IP地址
    Destination: 61.182.140.146 (61.182.140.146)                                          #目标IP地址
 

4、传输层TCP数据段头部信息

   Transmission Control Protocol, Src Port: 51833 (51833), Dst Port: http (80), Seq: 1, Ack: 1, Len: 214
    Source port: 51833 (51833)                                                            #源端口号
    Destination port: http (80)                                                              #目标端口号
    Sequence number: 1    (relative sequence number)                           #序列号(相对序列号)
    [Next sequence number: 215    (relative sequence number)]              #下一个序列号
    Acknowledgment number: 1    (relative ack number)                         #确认序列号
    Header length: 20 bytes                                                                  #头部长度
    Flags: 0x018 (PSH, ACK)                                                                   #TCP标记字段
    Window size value: 64800                                                                #流量控制的窗口大小
    Checksum: 0x677e [validation disabled]                                            #TCP数据段的校验和


这篇关于Wireshark 认识捕获的分析数据包(及各个分层协议的介绍)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130062

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty