初识 Embedding,为何大家都基于它搭建私人智能客服?

2024-09-02 12:44

本文主要是介绍初识 Embedding,为何大家都基于它搭建私人智能客服?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着 AI 技术的发展,大家在日常使用过程中经常会碰到一些目前 GPT4 也无法解决的问题:

  • 无法获取个人私有数据信息,进行智能问答
  • 无法获取最新信息,LLM 模型训练都是都是有截止日期的
  • 无法定制化私有的专属模型,从而在某个领域内取得更好效果

基于以上问题 OpenAI 官方提供了两种不同私有化模型定制方式:Fine-Tuning(微调)、Embedding(嵌入)。

一、Fine-Tuning 与 Embedding 区别

两种方式信息概括如下:

  • Fine-Tuning(微调):在一个已经预训练好的模型的基础上,使用用户提供的数据进行进一步的训练,从而使模型更适合用户的特定应用场景。微调可以提高模型的质量、准确性和可靠性,以及降低请求的延迟和代价。微调需要用户准备和上传训练数据,以及选择合适的模型和参数。
  • Embedding(嵌入):指将文本或其他内容转换为数值向量的形式,从而可以计算内容之间的相似度或相关性。OpenAI 的 Embedding 模型可以将文本解析为 1536 个维度,每个维度代表一个概念或特征。用户可以通过 Embedding 模型来存储、检索或比较文本或其他内容。Embedding 不需要用户提供训练数据,也不需要选择模型和参数。

Fine-Tuning 微调训练的成本较高,且自身需要一定的模型训练经验和一定规模的数据集,否则微调出来的模型效果并不会很理想。所以更推崇使用 Embedding 方式对数据进行处理从而达到预期效果,比如目前市面上智能客服完全可以通过 Embedding 实现落地。

二、Embedding 详细分析

接下来我们就来重点聊聊 Embedding ,它的大致流程是:

  1. 将已有数据集维护成对应的向量数据库
  2. 当用户通过 Prompt 进行提问时,从向量数据库提取相似或相近的信息
  3. 将信息连同 Prompt 一起发送给 GPT 模型来生成结果

这样做有一个好处就是我们只需要将相关的数据发送给 ChatGPT 即可,相对比较节约 Token。

Embedding 将数据转成成连续向量空间的过程,我们并不需要去深入了解。所以我们从 Embedding 如何识别相似或关联性数据讲起。

1. 如何从向量数据库提取相关数据?

从上面的概述我们可以了解到一个重点是:Embedding 模型需要将数据解析为 1536 个维度,每个维度代表一个概念或特征

将一段文字转换成这么多个维度的数据,从向量数据库提取的过程中就是根据这些维度进行计算。

人类是如何辨别一个人,想象自己平时是如何认出谁是谁呢?我们都是通过外表容貌来认人的(如眼睛大小、鼻子大小、脸型、发型等等),对我们熟悉的人,我们的脑海中会记住他的五官、身材等关键信息。

映射到向量数据也是一样的道理,将数据的 1536 个维度认为是它的“五官”,当我们需要从向量数据库中提取数据时只需要找到“五官”相似的数据即可。

图片

以如上二维坐标进行举例,相似或有关联性的向量数据就会分布在坐标系中比较临近的位置(奥运会、亚运会、残奥会),而内容基本不相干的向量数据(北京地铁)在坐标系中就会离得比较远。

2. 使用 OpenAI 生成向量数据

通过 OpenAI 官网我们也可以看到,价格还是比较便宜的。使用量按每个输入令牌定价,收费为每1000个 tokens 大约0.0004美元。

图片

通过 OpenAI 的 Embedding 方法调用,看看返回数据啥样。
在这里插入图片描述

接口返回了该文本对应的 1536 个维度数据,相当于我们已经掌握了这份文本数据的“五官”信息了。

图片

3. 如何提取相似数据?

在上面的方法上使用余弦值来比较相似度,代码如下:

import openai
from sklearn.metrics.pairwise import cosine_similarityopenai.api_key = "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"if __name__ == '__main__':evaluate_one_text = "奥运会"    evaluate_two_text = "亚运会"    evaluate_three_text = "北京地铁"   # 对数据进行 embedding    embeddings = openai.Embedding.create(    model="text-embedding-ada-002",        input=[evaluate_one_text, evaluate_two_text, evaluate_three_text],    )    evaluate_one = embeddings["data"][0]["embedding"]    evaluate_two = embeddings["data"][1]["embedding"]    evaluate_three = embeddings["data"][2]["embedding"]   print("奥运会&亚运会的余弦距离:" + format(cosine_similarity([evaluate_one], [evaluate_two])[0][0]))    print("奥运会&北京地铁的余弦距离:" + format(cosine_similarity([evaluate_one], [evaluate_three])[0][0]))    print("北京地铁&亚运会的余弦距离:" + format(cosine_similarity([evaluate_three], [evaluate_two])[0][0]))

结果如下:

奥运会&亚运会的余弦距离:0.9022809359592784
奥运会&北京地铁的余弦距离:0.7898007980212471
北京地铁&亚运会的余弦距离:0.7767229785942393

计算两个数据的相似度,我们可以使用余弦相似度(cosine similarity)的方法,即计算两个向量之间的夹角的余弦值。余弦相似度的范围是[-1, 1],其中 1 表示完全相同,0表示正向相关性,-1表示完全相反。

通过这样一个简单的案例,我们就可以知道 OpenAI 是如何从向量数据库中提取到相似或相关联的数据。

结尾

本文主要讲解了 Embedding 的一些基本概念,后续会更新如何基于 Embedding 转换私人数据搭建私人客服。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

这篇关于初识 Embedding,为何大家都基于它搭建私人智能客服?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129987

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点

Windows Server 2025 搭建NPS-Radius服务器的步骤

《WindowsServer2025搭建NPS-Radius服务器的步骤》本文主要介绍了通过微软的NPS角色实现一个Radius服务器,身份验证和证书使用微软ADCS、ADDS,具有一定的参考价... 目录简介示意图什么是 802.1X?核心作用802.1X的组成角色工作流程简述802.1X常见应用802.

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

Spring Cloud GateWay搭建全过程

《SpringCloudGateWay搭建全过程》:本文主要介绍SpringCloudGateWay搭建全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Spring Cloud GateWay搭建1.搭建注册中心1.1添加依赖1.2 配置文件及启动类1.3 测

SpringBoot快速搭建TCP服务端和客户端全过程

《SpringBoot快速搭建TCP服务端和客户端全过程》:本文主要介绍SpringBoot快速搭建TCP服务端和客户端全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录TCPServerTCPClient总结由于工作需要,研究了SpringBoot搭建TCP通信的过程