基于Python的机器学习系列(20):Mini-Batch K均值聚类

2024-09-02 10:52

本文主要是介绍基于Python的机器学习系列(20):Mini-Batch K均值聚类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

        K均值聚类(K-Means Clustering)是一种经典的无监督学习算法,但在处理大规模数据集时,计算成本较高。为了解决这一问题,Mini-Batch K均值聚类应运而生。Mini-Batch K均值聚类通过使用数据的子集(mini-batch)来更新簇中心,从而减少了计算量,加快了处理速度。

Mini-Batch K均值算法

        Mini-Batch K均值算法的基本步骤如下:

  1. 初始化簇中心:从数据集中随机选择K个样本作为初始簇中心。
  2. 批量更新
    • 随机选择数据的一个小批量。
    • 对于该批量中的每个样本,分配其到最近的簇中心。
    • 根据分配结果更新簇中心的位置。
  3. 停止条件:重复步骤2,直到达到最大迭代次数或簇中心变化小于设定的容忍度。

代码实现

        以下是Mini-Batch K均值聚类的Python实现:

from sklearn.metrics import pairwise_distances_argmin
from sklearn.datasets import make_blobs
from time import time
import numpy as npclass Mini_KMeans:def __init__(self, k, replacement=True, batch_size=100, max_iter=100):self.k = kself.replacement = replacementself.batch_size = batch_sizeself.max_iter = max_iterdef fit(self, X):m, n = X.shape# 1. 随机选择k个簇中心rng = np.random.RandomState(99)i = rng.permutation(m)[:self.k]self.centers = X[i]# 2. 批量更新for ix in np.arange(self.max_iter):random = rng.randint(m)X_batch = X[random:random+self.batch_size]# 3. 根据最近的簇中心分配标签labels = pairwise_distances_argmin(X_batch, self.centers)# 4. 更新簇中心new_centers = []for i in range(self.k):new_centers.append(X_batch[labels == i].mean(axis=0))new_centers = np.array(new_centers)# 5. 停止条件if np.allclose(self.centers, new_centers, rtol=0.2):breakelse:self.centers = new_centersprint(f"Done in {ix} iterations")# 计算总的簇内变异度total_with_variation_score = 0labels = pairwise_distances_argmin(X, self.centers)for i in range(self.k):cluster_mean = X[labels==i].mean(axis=0)total_with_variation_score += ((X[labels==i] - cluster_mean) ** 2).sum()print("Total within-cluster variation score: ", total_with_variation_score)def predict(self, X):return pairwise_distances_argmin(X, self.centers)# 主代码
X, _ = make_blobs(n_samples=1500, centers=4, cluster_std=0.60, random_state=0)
for k in range(2, 7):print(f"===== k = {k}")start = time()model = Mini_KMeans(k=k, max_iter=100)model.fit(X)print(f"Elapsed time: {time() - start:.2f} seconds")

结语

        Mini-Batch K均值聚类与标准K均值聚类相比,在处理大规模数据时表现出色,虽然在准确性上略有差距,但在计算速度上却能显著提高。与之前介绍的监督学习模型(如决策树、随机森林)相比,Mini-Batch K均值属于无监督学习范畴,不依赖于标签信息,而是通过数据的内部结构来发现潜在的分组。因此,它在数据探索和特征学习等任务中具有重要作用。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(20):Mini-Batch K均值聚类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129764

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地