yolov8目标检测pyside6可视化图形界面+检测源码ui文件——用于计数统计

本文主要是介绍yolov8目标检测pyside6可视化图形界面+检测源码ui文件——用于计数统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目结构

  1. YOLOv8模型加载:加载预训练的YOLOv8模型。
  2. PySide6 GUI:设计图形用户界面,用于显示检测结果和控制选项。
  3. 摄像头/视频输入:从摄像头或视频文件读取图像帧。
  4. 目标检测:使用YOLOv8模型对输入图像进行实时目标检测。
  5. 计数统计:根据检测到的目标数量更新界面上的计数器。

关键步骤

1. YOLOv8模型准备
  • 首先,你需要有一个YOLOv8模型,可以从官方仓库下载或使用自己的训练模型。
  • 模型应该能够处理实时视频流,这意味着它需要足够快地处理每一帧。

2. 设计PySide6 GUI
  • 创建一个主窗口,其中包含一个显示视频流的区域和一个显示计数结果的区域。
  • 可能还包括开始/停止检测按钮、选择摄像头设备的下拉菜单等控件。
3. 摄像头/视频输入

  • 使用cv2.VideoCapture来获取摄像头或视频文件的帧。
  • 将捕获到的帧传递给YOLOv8模型进行处理。
4. 目标检测

  • 使用YOLOv8模型对每一帧进行目标检测。
  • 在检测到的对象周围绘制边界框,并在界面上显示。

5. 计数统计
  • 对每个类别的对象进行计数,并在GUI中实时更新计数器。
  • 这可以通过维护一个字典来跟踪每个类别检测到的数量,并在每次检测后更新该字典。

示例代码框架

这里提供一个非常基础的框架来帮助理解整个流程。这并不是完整的代码,而是一个概念性的示例。

1import sys
2import cv2
3from PySide6.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton, QVBoxLayout, QWidget
4from PySide6.QtGui import QImage, QPixmap
5from PySide6.QtCore import QTimer
6import torch
7
8# 假设已经加载好了YOLOv8模型
9model = torch.hub.load('ultralytics/yolov5', 'custom', path='path/to/yolov8_model')
10
11class DetectionApp(QMainWindow):
12    def __init__(self):
13        super().__init__()
14        self.initUI()
15        
16    def initUI(self):
17        self.setWindowTitle('YOLOv8 Object Detection App')
18        self.setGeometry(100, 100, 800, 600)
19
20        central_widget = QWidget()
21        self.setCentralWidget(central_widget)
22
23        layout = QVBoxLayout()
24        self.label = QLabel()
25        self.label.setFixedSize(640, 480)
26        layout.addWidget(self.label)
27
28        self.button = QPushButton('Start Detection', self)
29        self.button.clicked.connect(self.start_detection)
30        layout.addWidget(self.button)
31
32        self.count_label = QLabel('Counts:')
33        layout.addWidget(self.count_label)
34
35        central_widget.setLayout(layout)
36
37        self.cap = None
38        self.timer = QTimer()
39        self.timer.timeout.connect(self.update_frame)
40
41    def start_detection(self):
42        self.cap = cv2.VideoCapture(0)
43        self.timer.start(20)  # 每50毫秒更新一次画面
44
45    def update_frame(self):
46        ret, frame = self.cap.read()
47        if ret:
48            results = model(frame)
49            frame = results.render()[0]
50            self.update_counts(results)
51            self.display_frame(frame)
52
53    def update_counts(self, results):
54        # 更新计数器逻辑
55        pass
56
57    def display_frame(self, frame):
58        image = QImage(frame.data, frame.shape[1], frame.shape[0], QImage.Format_BGR888).rgbSwapped()
59        pixmap = QPixmap.fromImage(image)
60        self.label.setPixmap(pixmap)
61
62    def closeEvent(self, event):
63        if self.cap is not None:
64            self.cap.release()
65        self.timer.stop()
66        event.accept()
67
68if __name__ == '__main__':
69    app = QApplication(sys.argv)
70    ex = DetectionApp()
71    ex.show()
72    sys.exit(app.exec())

这个框架展示了如何创建一个基本的应用程序来显示来自摄像头的视频流,并通过YOLOv8进行目标检测。具体的update_counts方法需要根据你的具体需求来实现,以便正确统计检测到的目标。

这篇关于yolov8目标检测pyside6可视化图形界面+检测源码ui文件——用于计数统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129507

相关文章

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

VS配置好Qt环境之后但无法打开ui界面的问题解决

《VS配置好Qt环境之后但无法打开ui界面的问题解决》本文主要介绍了VS配置好Qt环境之后但无法打开ui界面的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目UKeLvb录找到Qt安装目录中designer.UKeLvBexe的路径找到vs中的解决方案资源

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue