人生苦短我用Python excel转csv

2024-09-02 07:44

本文主要是介绍人生苦短我用Python excel转csv,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人生苦短我用Python excel转csv

  • 前言
  • 准备工作
  • pandas库
  • 主要类和方法
    • ExcelFile 类
    • DataFrame 类
    • read_excel 函数
    • to_csv 函数
  • 示例

前言

Excel 文件和csv文件都是常用的电子表格文件格式,其中csv格式更便于用于数据交换和处理。本文使用pandas库将Excel文件转化为csv文件。

准备工作

pip install pandas
pip install openpyxl

pandas库

  • csv库是Python标准库的一部分,提供了基本的csv文件读写功能。它不能直接支持读取 Excel 文件。

  • 要读取 Excel 文件,通常需要使用 pandas 库。以下是来自官网的介绍:

pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
built on top of the Python programming language.

  • 在读取不同文件格式所需要的engine
  • openpyxl 是一个用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件的Python库。支持通过 Python 代码创建、修改和读取 Excel 文件,而无需依赖于 Microsoft Excel 应用程序。
"""
engine : {{'openpyxl', 'calamine', 'odf', 'pyxlsb', 'xlrd'}}, default NoneIf io is not a buffer or path, this must be set to identify io.Engine compatibility :- ``openpyxl`` supports newer Excel file formats.- ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)and OpenDocument (.ods) file formats.- ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).- ``pyxlsb`` supports Binary Excel files.- ``xlrd`` supports old-style Excel files (.xls).When ``engine=None``, the following logic will be used to determine the engine:- If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),then `odf <https://pypi.org/project/odfpy/>`_ will be used.- Otherwise if ``path_or_buffer`` is an xls format, ``xlrd`` will be used.- Otherwise if ``path_or_buffer`` is in xlsb format, ``pyxlsb`` will be used.- Otherwise ``openpyxl`` will be used.
"""

主要类和方法

  • pandas库中ExcelFile 类主要用于读取Excel文件, DataFrame 类用于表示和操作数据。

ExcelFile 类

  • ExcelFile 类用于处理 Excel 文件,封装了解析和读取Excel文件的操作。
  • 支持查看 Excel 文件中的工作表名称,并读取特定的工作表。
  • 支持读取 Excel 文件中的多个工作表,并将每个工作表转换为一个 DataFrame 对象。
class ExcelFile:def __init__(self,path_or_buffer,engine: str | None = None,storage_options: StorageOptions | None = None,engine_kwargs: dict | None = None,) -> None:@propertydef sheet_names(self):return self._reader.sheet_names

DataFrame 类

  • DataFrame 类用于表示二维的、大小可变、潜在异构的表格数据。
  • 可以包含多种数据类型的列,如整数、浮点数、字符串等。
  • 可以进行各种数据操作,如选择、过滤、修改、合并、分组、排序等。

read_excel 函数

  • pandasread_excel 函数,用于从 Excel 文件中读取数据并将其转换为 DataFrame 对象。
  • 支持多种参数来处理不同的 Excel 文件格式和内容。
def read_excel(io,sheet_name: str | int | list[IntStrT] | None = 0,*,header: int | Sequence[int] | None = 0,names: SequenceNotStr[Hashable] | range | None = None,index_col: int | str | Sequence[int] | None = None,usecols: int| str| Sequence[int]| Sequence[str]| Callable[[str], bool]| None = None,dtype: DtypeArg | None = None,engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = None,converters: dict[str, Callable] | dict[int, Callable] | None = None,true_values: Iterable[Hashable] | None = None,false_values: Iterable[Hashable] | None = None,skiprows: Sequence[int] | int | Callable[[int], object] | None = None,nrows: int | None = None,na_values=None,keep_default_na: bool = True,na_filter: bool = True,verbose: bool = False,parse_dates: list | dict | bool = False,date_parser: Callable | lib.NoDefault = lib.no_default,date_format: dict[Hashable, str] | str | None = None,thousands: str | None = None,decimal: str = ".",comment: str | None = None,skipfooter: int = 0,storage_options: StorageOptions | None = None,dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,engine_kwargs: dict | None = None,
) -> DataFrame | dict[IntStrT, DataFrame]:
  • 常用参数
参数说明默认值
ioExcel 文件的路径或文件对象
sheet_name要读取的工作表名称或索引。
可以是字符串(工作表名称)、整数(工作表索引)、列表(多个工作表)或 None(所有工作表)
默认为 0(第一个工作表)
header指定哪一行作为列名默认为 0(第一行)
index_col指定哪一列作为行索引。可以是整数或列名
usecols指定要读取的列。可以是列索引、列名或列范围。
dtype指定列的数据类型。可以是字典,键为列名,值为数据类型。
skiprows跳过文件开头的一些行。可以是整数或列表。
nrows要读取的行数。

to_csv 函数

  • DataFrame 对象提供了一个非常方便的方法 to_csv,用于将 DataFrame 中的数据写入 CSV 文件。
    def to_csv(self,path_or_buf: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None,sep: str = ",",na_rep: str = "",float_format: str | Callable | None = None,columns: Sequence[Hashable] | None = None,header: bool_t | list[str] = True,index: bool_t = True,index_label: IndexLabel | None = None,mode: str = "w",encoding: str | None = None,compression: CompressionOptions = "infer",quoting: int | None = None,quotechar: str = '"',lineterminator: str | None = None,chunksize: int | None = None,date_format: str | None = None,doublequote: bool_t = True,escapechar: str | None = None,decimal: str = ".",errors: OpenFileErrors = "strict",storage_options: StorageOptions | None = None,) -> str | None:
  • 常用参数
参数说明默认值
path_or_buf输出文件的路径或文件对象。
如果为 None,则返回 CSV 字符串。
None
sep分隔符默认为逗号 ,
index是否写入行索引默认为 True
header是否写入列名默认为 True
columns指定要写入的列默认为所有列
encoding指定编码格式默认为 utf-8

示例

实现很简单:

  • 使用 pandas 库读取 Excel 文件;
  • 读取工作表并将其转换为 DataFrame 对象;
  • DataFrame 写入 csv 文件。
import osimport pandas as pddef export_csv(input_file, output_path):# 创建ExcelFile对象with pd.ExcelFile(input_file) as xls:# 获取工作表名称列表for i, sheet_name in enumerate(xls.sheet_names):# 读取工作表并转换为DataFramedf = pd.read_excel(xls, sheet_name=sheet_name)output_file = os.path.join(output_path, f'{i + 1}-{sheet_name}.csv')# 将DataFrame中的数据写入CSV文件。df.to_csv(output_file, index=False)

这篇关于人生苦短我用Python excel转csv的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129396

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1