【BLE】四.SMP安全配对详解

2024-09-02 07:20
文章标签 详解 安全 配对 ble smp

本文主要是介绍【BLE】四.SMP安全配对详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

设备配对流程

在这里插入图片描述

SMP专业术语

  • Paring(配对):
    配对能力交换,设备认证,密钥生成,连接加密以及机密信息分发等
    过程

  • Bonding(绑定)
    配对中会生成一个长期密钥(LTK,long-term Key),双方把LTK存储在Flash,那么这两个设备再次重连就可跳过配对流程,且直接使用LTK对蓝牙连接进行加密;
    不存储LTK(不分发LTK),paring完成后连接也是加密的,但重连需再次进行paring流程,否则两者还是明文通信;
    在不引起误解的情况下,我们经常把paring当成paring和bonding两者的组合,因为只paring不bonding的应用情况非常少见,下文就不区分paring和bonding的区别。

  • SM(security manager):
    蓝牙协议栈的安全管理层,包括paring,bonding,以及SMP。

  • SMP(security manager protocol)
    安全管理协议,两个设备之间的蓝牙交互命令序列,对paring的空中包进行了严格时序规定

  • MITM(man in the middle):
    A和B通信过程中,C会插入进来以模拟A或者B,并且具备截获和篡改A和B之间所有通信报文的能力;若需要具备MITM保护能力,通过认证实现,分别为:OOB认证信息,passkey以及numeric comparison。

  • OOB(out of band,带外认证):
    不通过蓝牙射频本身来交互,而是-通过如人眼,NFC,UART等带外方式来交互配对信息。

  • Passkey(pin码):
    用户在键盘中输入的6位数字,以达到认证设备的目的。

  • Numeric comparison(数字比较):
    跟passkey一样,也是用来认证设备的6位数字,显示在显示器上。如下:
    在这里插入图片描述

  • IO capabilities(输入输出能力):
    是否有键盘,是否有显示器。

  • IRK(Identity Resolving Key,蓝牙设备地址解析密钥):
    可解析的随机地址,比如iPhone手机,由于其地址随着时间会变化IRK通过解析变化的地址的规律,从而确定这些地址是否来自同一个设备,即IRK可以用来识别蓝牙设备身份;
    IRK一般由设备出厂时按照一定要求自动生成

  • Identity Address(设备唯一地址):
    包括publicrandom staticprivate resolvablerandom unresolved共四类;
    设备不支持privacy,那么identity address就等于public或者random static设备地址;。如果设备支持privacy,即使用private resolvable蓝牙设备地址,在这种情况下,虽然其地址每隔一段时间会变化一次,但是identity address仍然保持不变,其取值还是等于内在的public或者random static设备地址。
    Identity Address和IRK都可以用来唯一标识一个蓝牙设备。

  • TK(Temporary Key,临时密钥)

  • STK(short term key,短期密钥)

  • LTK(long term key,长期密钥)

IO能力

在这里插入图片描述

配对方式

在这里插入图片描述

只要有一端支持OOB,即使用OOB验证配对;只有都不支持才执行中间人(MITM)设置,即看两端是否有其一是支持使用IO功能的,支持就使用IO功能验证配对,如下所示:

IO功能选择

例如手机端作为发起端,一般都是“Keyboard Only”与“KeyBoard Display”,如下所示:
在这里插入图片描述
其中的无认证:
在这里插入图片描述

示例工程:

在这里插入图片描述

SMP相关初始化

  • 初始化流程:
    在这里插入图片描述

  • 设置安全配置参数:
    在这里插入图片描述

  • 服务端GATT回调:
    在这里插入图片描述

  • 服务端GAP回调:
    在这里插入图片描述

  • 客户端GAP回调:
    在这里插入图片描述

安全配置参数的代码片段

  • GATTS:
    /* set the security iocap & auth_req & key size & init key response key parameters to the stack*///	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_NO_BOND;			//未启用绑定
//	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_BOND;				//启用绑定
//	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_MITM;			//开启MITM保护
//	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_SC_ONLY;		//未启用绑定的安全连接
//	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_SC_BOND;		//启用绑定后的安全连接esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_SC_MITM;		//使用MITM保护和未启用连接的安全连接
//	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_SC_MITM_BOND;	//安全连接,启用MITM保护和连接//  esp_ble_io_cap_t iocap = ESP_IO_CAP_NONE;           //NoInputNoOutputesp_ble_io_cap_t iocap = ESP_IO_CAP_KBDISP;			//Keyboard display
//	esp_ble_io_cap_t iocap = ESP_IO_CAP_IO;				//DisplayYesNo
//	esp_ble_io_cap_t iocap = ESP_IO_CAP_OUT;			//DisplayOnly
//	esp_ble_io_cap_t iocap = ESP_IO_CAP_IN;				//KeyboardOnlyuint8_t key_size = 16;      //the key size should be 7~16 bytesuint8_t init_key = ESP_BLE_ENC_KEY_MASK | ESP_BLE_ID_KEY_MASK;  //即LTKuint8_t rsp_key = ESP_BLE_ENC_KEY_MASK | ESP_BLE_ID_KEY_MASK;  //即IRK//set static passkeyuint32_t passkey = 123456;uint8_t auth_option = ESP_BLE_ONLY_ACCEPT_SPECIFIED_AUTH_DISABLE;
//	uint8_t auth_option = ESP_BLE_ONLY_ACCEPT_SPECIFIED_AUTH_ENABLE;			//必须绑定才能开启uint8_t oob_support = ESP_BLE_OOB_DISABLE;			//关闭OOB
//	uint8_t oob_support = ESP_BLE_OOB_ENABLE;			//开启OOBesp_ble_gap_set_security_param(ESP_BLE_SM_SET_STATIC_PASSKEY, &passkey, sizeof(uint32_t));esp_ble_gap_set_security_param(ESP_BLE_SM_AUTHEN_REQ_MODE, &auth_req, sizeof(uint8_t));esp_ble_gap_set_security_param(ESP_BLE_SM_IOCAP_MODE, &iocap, sizeof(uint8_t));esp_ble_gap_set_security_param(ESP_BLE_SM_MAX_KEY_SIZE, &key_size, sizeof(uint8_t));esp_ble_gap_set_security_param(ESP_BLE_SM_ONLY_ACCEPT_SPECIFIED_SEC_AUTH, &auth_option, sizeof(uint8_t));esp_ble_gap_set_security_param(ESP_BLE_SM_OOB_SUPPORT, &oob_support, sizeof(uint8_t));/* If your BLE device acts as a Slave, the init_key means you hope which types of key of the master should distribute to you,and the response key means which key you can distribute to the master;If your BLE device acts as a master, the response key means you hope which types of key of the slave should distribute to you,and the init key means which key you can distribute to the slave. */esp_ble_gap_set_security_param(ESP_BLE_SM_SET_INIT_KEY, &init_key, sizeof(uint8_t));esp_ble_gap_set_security_param(ESP_BLE_SM_SET_RSP_KEY, &rsp_key, sizeof(uint8_t));
  • GATTC:
    /* set the security iocap & auth_req & key size & init key response key parameters to the stack*///	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_NO_BOND;			//未启用绑定
//	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_BOND;				//启用绑定
//	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_MITM;			//开启MITM保护
//	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_SC_ONLY;		//未启用绑定的安全连接
//	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_SC_BOND;		//启用绑定后的安全连接esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_SC_MITM;		//使用MITM保护和未启用连接的安全连接
//	esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_SC_MITM_BOND;	//安全连接,启用MITM保护和连接//  esp_ble_io_cap_t iocap = ESP_IO_CAP_NONE;           //NoInputNoOutputesp_ble_io_cap_t iocap = ESP_IO_CAP_KBDISP;			//Keyboard display
//	esp_ble_io_cap_t iocap = ESP_IO_CAP_IO;				//DisplayYesNo
//	esp_ble_io_cap_t iocap = ESP_IO_CAP_OUT;			//DisplayOnly
//	esp_ble_io_cap_t iocap = ESP_IO_CAP_IN;				//KeyboardOnlyuint8_t key_size = 16;      //the key size should be 7~16 bytesuint8_t init_key = ESP_BLE_ENC_KEY_MASK | ESP_BLE_ID_KEY_MASK;uint8_t rsp_key = ESP_BLE_ENC_KEY_MASK | ESP_BLE_ID_KEY_MASK;
//    uint8_t oob_support = ESP_BLE_OOB_DISABLE;		//关闭OOBuint8_t oob_support = ESP_BLE_OOB_ENABLE;			//开启OOBesp_ble_gap_set_security_param(ESP_BLE_SM_AUTHEN_REQ_MODE, &auth_req, sizeof(uint8_t));esp_ble_gap_set_security_param(ESP_BLE_SM_IOCAP_MODE, &iocap, sizeof(uint8_t));esp_ble_gap_set_security_param(ESP_BLE_SM_MAX_KEY_SIZE, &key_size, sizeof(uint8_t));esp_ble_gap_set_security_param(ESP_BLE_SM_OOB_SUPPORT, &oob_support, sizeof(uint8_t));/* If your BLE device act as a Slave, the init_key means you hope which types of key of the master should distribute to you,and the response key means which key you can distribute to the Master;If your BLE device act as a master, the response key means you hope which types of key of the slave should distribute to you,and the init key means which key you can distribute to the slave. */esp_ble_gap_set_security_param(ESP_BLE_SM_SET_INIT_KEY, &init_key, sizeof(uint8_t));esp_ble_gap_set_security_param(ESP_BLE_SM_SET_RSP_KEY, &rsp_key, sizeof(uint8_t));

这篇关于【BLE】四.SMP安全配对详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129355

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编