NLP-文本处理:依存句法分析(主谓、动宾、动补...)【基于“分词后得到的词语列表A”+“A进行词性标注后得到的词性列表B”来进行依存句法分析】【使用成熟的第三方工具包】

本文主要是介绍NLP-文本处理:依存句法分析(主谓、动宾、动补...)【基于“分词后得到的词语列表A”+“A进行词性标注后得到的词性列表B”来进行依存句法分析】【使用成熟的第三方工具包】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

句法分析(syntactic parsing)是自然语言处理中的关键技术之一,它是对输入的文本句子进行分析以得到句子的句法结构的处理过程。对句法结构进行分析,一方面是语言理解的自身需求,句法分析是语言理解的重要一环,另一方面也为其它自然语言处理任务提供支持。例如句法驱动的统计机器翻译需要对源语言或目标语言(或者同时两种语言)进行句法分析。

第三方工具包:

哈工大LTP首页
哈工大LTP4 文档

语义角色类型

在这里插入图片描述

依存句法关系

在这里插入图片描述

语义依存关系

在这里插入图片描述

import os
from pyltp import Segmentor, Postagger, Parser, NamedEntityRecognizer, SementicRoleLabeller
# pip install pyltp -i https://pypi.tuna.tsinghua.edu.cn/simple 可以先下载好whl文件
#LTP语言平台:http://ltp.ai/index.html
#咱们使用的工具包,pyltp:https://pyltp.readthedocs.io/zh_CN/latest/api.html
#LTP附录:https://ltp.readthedocs.io/zh_CN/latest/appendix.html#id3
#安装方法:https://github.com/HIT-SCIR/pyltp
class LtpParser:def __init__(self):LTP_DIR = "./ltp_data_v3.4.0"self.segmentor = Segmentor()    # 分词self.segmentor.load(os.path.join(LTP_DIR, "cws.model"))self.postagger = Postagger()    # 词性标注self.postagger.load(os.path.join(LTP_DIR, "pos.model"))self.parser = Parser()  # 句法依存分析self.parser.load(os.path.join(LTP_DIR, "parser.model"))self.recognizer = NamedEntityRecognizer()   # 命名实体识别self.recognizer.load(os.path.join(LTP_DIR, "ner.model"))self.labeller = SementicRoleLabeller()  # 语义角色标注self.labeller.load(os.path.join(LTP_DIR, 'pisrl_win.model'))# 依存句法分析【为句子中的每个词语维护一个保存句法依存儿子节点的字典】def build_parse_child_dict(self, words, postags): # words:分词后的结果;postags:词性标注后的结果;arcs:依存句法分析树child_dict_list = []format_parse_list = []arcs = self.parser.parse(words, postags)  # 建立依存句法分析树print("分词列表:words = {}".format(words))print("词性分析:postags = {}".format(postags))rely_ids = [arc.head - 1 for arc in arcs]  # 提取该句话的每一个词的依存父节点id【0为ROOT,词语从1开始编号】: [2, 0, 2, 5, 8, 8, 6, 3] - 1 =  [1, -1, 1, 4, 7, 7, 5, 2]【此时 -1 表示ROOT】print("各个词语所依赖的父节点:rely_ids = {0}".format(rely_ids))heads = ['Root' if rely_id == -1 else words[rely_id] for rely_id in rely_ids]  # 匹配依存父节点词语print("各个词语所依赖的父节点词语 = {0}".format(heads))relations = [arc.relation for arc in arcs]  # 提取依存关系print("各个词语与所依赖的父节点的依赖关系 = {0}".format(relations))for word_index in range(len(words)):print("\n")print("word_index = {0}----word = {1}".format(word_index, words[word_index]))child_dict = dict() # 每个词语与所有其他词语的关系字典for arc_index in range(len(arcs)):  # arc_index==0时表示ROOT【还没进入“我想听一首迪哥的歌”语句】,arc_index==1时表示“我”# 当“依存句法分析树”遍历,遇到当前词语时,说明当前词语在依存句法分析树中与其他词语有依存关系if word_index == rely_ids[arc_index]:  # arcs[arc_index].head 表示arcs[arc_index]所代表的词语依存弧的父结点的索引。 ROOT 节点的索引是 0 ,第一个词开始的索引依次为1,2,3,···【“我”的索引为1】arc. relation 表示依存弧的关系。print("word_index = {0}----arc_index = {1}----rely_ids[arc_index] = {2}----relations[arc_index] = {3}".format(word_index, arc_index, rely_ids[arc_index], relations[arc_index]))if relations[arc_index] in child_dict:  # arcs[arc_index].relation表示arcs[arc_index]所代表的词语与父节点的依存关系(语法关系)child_dict[relations[arc_index]].append(arc_index) # 添加 child_dict = {'ATT': [4]}----> child_dict = {'ATT': [4, 5]}else:child_dict[relations[arc_index]] = [] # 新建child_dict[relations[arc_index]].append(arc_index)  # child_dict = {[]}----> child_dict = {'ATT': [4]}print("child_dict = {0}".format(child_dict))child_dict_list.append(child_dict)# 每个词对应的依存关系父节点和其关系print("\nchild_dict_list = {0}".format(child_dict_list))# 整合每个词语的句法依存关系print()for i in range(len(words)):a = [relations[i], words[i], i, postags[i], heads[i], rely_ids[i]-1, postags[rely_ids[i]-1]]print("整合每个词语的句法依存关系---->a = {}".format(a))format_parse_list.append(a)return child_dict_list, format_parse_list'''parser主函数'''def parser_main(self, sentence):# 分词words = list(self.segmentor.segment(sentence))# 词性标注postags = list(self.postagger.postag(words))# 依存句法分析child_dict_list, format_parse_list = self.build_parse_child_dict(words, postags)return words, postags, child_dict_list, format_parse_listif __name__ == '__main__':parse = LtpParser()sentence = '我想听一首迪哥的歌'words, postags, child_dict_list, format_parse_list = parse.parser_main(sentence)print("\n\n\n分词-->len(words) = {0}----words = {1}".format(len(words), words))print("\n词性标注-->len(postags) = {0}----postags = {1}".format(len(postags), postags))print("\n依存句法分析-->每个词对应的依存关系儿子节点和其关系-->len(child_dict_list) = {0}----child_dict_list = {1}".format(len(child_dict_list), child_dict_list))print("\n依存句法分析--整合-->len(format_parse_list) = {0}----format_parse_list = {1}".format(len(format_parse_list), format_parse_list))

输出结果:

分词列表:words = ['我', '想', '听', '一', '首', '迪哥', '的', '歌']
词性分析:postags = ['r', 'v', 'v', 'm', 'q', 'nh', 'u', 'n']
各个词语所依赖的父节点:rely_ids = [1, -1, 1, 4, 7, 7, 5, 2]
各个词语所依赖的父节点词语 = ['想', 'Root', '想', '首', '歌', '歌', '迪哥', '听']
各个词语与所依赖的父节点的依赖关系 = ['SBV', 'HED', 'VOB', 'ATT', 'ATT', 'ATT', 'RAD', 'VOB']word_index = 0----word = 我child_dict_list = [{}]word_index = 1----word = 想
word_index = 1----arc_index = 0----rely_ids[arc_index] = 1----relations[arc_index] = SBV
child_dict = {'SBV': [0]}
word_index = 1----arc_index = 2----rely_ids[arc_index] = 1----relations[arc_index] = VOB
child_dict = {'SBV': [0], 'VOB': [2]}child_dict_list = [{}, {'SBV': [0], 'VOB': [2]}]word_index = 2----word = 听
word_index = 2----arc_index = 7----rely_ids[arc_index] = 2----relations[arc_index] = VOB
child_dict = {'VOB': [7]}child_dict_list = [{}, {'SBV': [0], 'VOB': [2]}, {'VOB': [7]}]word_index = 3----word = 一child_dict_list = [{}, {'SBV': [0], 'VOB': [2]}, {'VOB': [7]}, {}]word_index = 4----word = 首
word_index = 4----arc_index = 3----rely_ids[arc_index] = 4----relations[arc_index] = ATT
child_dict = {'ATT': [3]}child_dict_list = [{}, {'SBV': [0], 'VOB': [2]}, {'VOB': [7]}, {}, {'ATT': [3]}]word_index = 5----word = 迪哥
word_index = 5----arc_index = 6----rely_ids[arc_index] = 5----relations[arc_index] = RAD
child_dict = {'RAD': [6]}child_dict_list = [{}, {'SBV': [0], 'VOB': [2]}, {'VOB': [7]}, {}, {'ATT': [3]}, {'RAD': [6]}]word_index = 6----word = 的child_dict_list = [{}, {'SBV': [0], 'VOB': [2]}, {'VOB': [7]}, {}, {'ATT': [3]}, {'RAD': [6]}, {}]word_index = 7----word = 歌
word_index = 7----arc_index = 4----rely_ids[arc_index] = 7----relations[arc_index] = ATT
child_dict = {'ATT': [4]}
word_index = 7----arc_index = 5----rely_ids[arc_index] = 7----relations[arc_index] = ATT
child_dict = {'ATT': [4, 5]}child_dict_list = [{}, {'SBV': [0], 'VOB': [2]}, {'VOB': [7]}, {}, {'ATT': [3]}, {'RAD': [6]}, {}, {'ATT': [4, 5]}]整合每个词语的句法依存关系---->a = ['SBV', '我', 0, 'r', '想', 0, 'r']
整合每个词语的句法依存关系---->a = ['HED', '想', 1, 'v', 'Root', -2, 'u']
整合每个词语的句法依存关系---->a = ['VOB', '听', 2, 'v', '想', 0, 'r']
整合每个词语的句法依存关系---->a = ['ATT', '一', 3, 'm', '首', 3, 'm']
整合每个词语的句法依存关系---->a = ['ATT', '首', 4, 'q', '歌', 6, 'u']
整合每个词语的句法依存关系---->a = ['ATT', '迪哥', 5, 'nh', '歌', 6, 'u']
整合每个词语的句法依存关系---->a = ['RAD', '的', 6, 'u', '迪哥', 4, 'q']
整合每个词语的句法依存关系---->a = ['VOB', '歌', 7, 'n', '听', 1, 'v']分词-->len(words) = 8----words = ['我', '想', '听', '一', '首', '迪哥', '的', '歌']词性标注-->len(postags) = 8----postags = ['r', 'v', 'v', 'm', 'q', 'nh', 'u', 'n']依存句法分析-->每个词对应的依存关系儿子节点和其关系-->len(child_dict_list) = 8----child_dict_list = [{}, {'SBV': [0], 'VOB': [2]}, {'VOB': [7]}, {}, {'ATT': [3]}, {'RAD': [6]}, {}, {'ATT': [4, 5]}]依存句法分析--整合-->len(format_parse_list) = 8----format_parse_list = [['SBV', '我', 0, 'r', '想', 0, 'r'], ['HED', '想', 1, 'v', 'Root', -2, 'u'], ['VOB', '听', 2, 'v', '想', 0, 'r'], ['ATT', '一', 3, 'm', '首', 3, 'm'], ['ATT', '首', 4, 'q', '歌', 6, 'u'], ['ATT', '迪哥', 5, 'nh', '歌', 6, 'u'], ['RAD', '的', 6, 'u', '迪哥', 4, 'q'], ['VOB', '歌', 7, 'n', '听', 1, 'v']]Process finished with exit code 0



参考资料:
一文读懂依存句法分析

这篇关于NLP-文本处理:依存句法分析(主谓、动宾、动补...)【基于“分词后得到的词语列表A”+“A进行词性标注后得到的词性列表B”来进行依存句法分析】【使用成熟的第三方工具包】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128873

相关文章

mybatis-plus QueryWrapper中or,and的使用及说明

《mybatis-plusQueryWrapper中or,and的使用及说明》使用MyBatisPlusQueryWrapper时,因同时添加角色权限固定条件和多字段模糊查询导致数据异常展示,排查发... 目录QueryWrapper中or,and使用列表中还要同时模糊查询多个字段经过排查这就导致只要whe

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

Python实现中文文本处理与分析程序的示例详解

《Python实现中文文本处理与分析程序的示例详解》在当今信息爆炸的时代,文本数据的处理与分析成为了数据科学领域的重要课题,本文将使用Python开发一款基于Python的中文文本处理与分析程序,希望... 目录一、程序概述二、主要功能解析2.1 文件操作2.2 基础分析2.3 高级分析2.4 可视化2.5

使用Go实现文件复制的完整流程

《使用Go实现文件复制的完整流程》本案例将实现一个实用的文件操作工具:将一个文件的内容完整复制到另一个文件中,这是文件处理中的常见任务,比如配置文件备份、日志迁移、用户上传文件转存等,文中通过代码示例... 目录案例说明涉及China编程知识点示例代码代码解析示例运行练习扩展小结案例说明我们将通过标准库 os

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典