NumPy(五):数组统计【平均值:mean()、最大值:max()、最小值:min()、标准差:std()、方差:var()、中位数:median()】【axis=0:按列运算;axis=0:按列】

本文主要是介绍NumPy(五):数组统计【平均值:mean()、最大值:max()、最小值:min()、标准差:std()、方差:var()、中位数:median()】【axis=0:按列运算;axis=0:按列】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

统计运算

  • np.max()
  • np.min()
  • np.median()
  • np.mean()
  • np.std()
  • np.var()
  • np.argmax(axis=) — 最大元素对应的下标
  • np.argmin(axis=) — 最小元素对应的下标

NumPy提供了一个N维数组类型ndarray,它描述了 相同类型 的“items”的集合。(NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.)

在这里插入图片描述

用ndarray进行存储:

import numpy as np# 创建ndarray
score = np.array(
[[80, 89, 86, 67, 79],
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74],
[91, 91, 90, 67, 69],
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84],
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])score

返回结果:

array([[80, 89, 86, 67, 79],[78, 97, 89, 67, 81],[90, 94, 78, 67, 74],[91, 91, 90, 67, 69],[76, 87, 75, 67, 86],[70, 79, 84, 67, 84],[94, 92, 93, 67, 64],[86, 85, 83, 67, 80]])

如果想要知道学生成绩最大的分数,或者做小分数应该怎么做?

一、统计指标

在数据挖掘/机器学习领域,统计指标的值也是我们分析问题的一种方式。

  • axis为0,按列运算
  • axis为1,按行运算

常用的指标如下:

  • min(a, axis)
    • Return the minimum of an array or minimum along an axis.
  • max(a, axis])
    • Return the maximum of an array or maximum along an axis.
  • median(a, axis)
    • Compute the median along the specified axis.
  • mean(a, axis, dtype)
    • Compute the arithmetic mean along the specified axis.
  • std(a, axis, dtype)
    • Compute the standard deviation along the specified axis.
  • var(a, axis, dtype)
    • Compute the variance along the specified axis.

二、案例:学生成绩统计运算

进行统计的时候,axis 轴的取值并不一定,Numpy中不同的API轴的值都不一样,在这里,axis 0代表列, axis 1代表行去进行统计

# 接下来对于前四名学生,进行一些统计运算
# 指定列 去统计
temp = score[:4, 0:5]
print("前四名学生,各科成绩的最大分:{}".format(np.max(temp, axis=0)))
print("前四名学生,各科成绩的最小分:{}".format(np.min(temp, axis=0)))
print("前四名学生,各科成绩波动情况:{}".format(np.std(temp, axis=0)))
print("前四名学生,各科成绩的平均分:{}".format(np.mean(temp, axis=0)))

结果:

前四名学生,各科成绩的最大分:[96 97 72 98 89]
前四名学生,各科成绩的最小分:[55 57 45 76 77]
前四名学生,各科成绩波动情况:[16.25576821 14.92271758 10.40432602  8.0311892   4.32290412]
前四名学生,各科成绩的平均分:[78.5  75.75 62.5  85.   82.25]

如果需要统计出某科最高分对应的是哪个同学?

  • np.argmax(temp, axis=)
  • np.argmin(temp, axis=)
print("前四名学生,各科成绩最高分对应的学生下标:{}".format(np.argmax(temp, axis=0)))

结果:

前四名学生,各科成绩最高分对应的学生下标:[0 2 0 0 1]

三、案例

import numpy as npar = np.arange(6).reshape(2, 3)
print('ar = ', ar)
# 统计运算
print('ar.mean() = ', ar.mean())  # 求平均值
print('按列求平均值:np.mean(ar, axis=0) = ', np.mean(ar, axis=0))  # 按列求平均值
print('按行求平均值:np.mean(ar, axis=1) = ', np.mean(ar, axis=1))  # 按行求平均值
print('ar.max() = ', ar.max())  # 求最大值
print('按列求最大值:np.max(ar, axis=0) = ', np.max(ar, axis=0))  # 按列求最大值
print('按行求最大值:np.max(ar, axis=1) = ', np.max(ar, axis=1))  # 按行求最大值
print('ar.min() = ', ar.min())  # 求最小值
print('按列求最小值:np.min(ar, axis=0) = ', np.min(ar, axis=0))  # 按列求最小值
print('按行求最小值:np.min(ar, axis=1) = ', np.min(ar, axis=1))  # 按行求最小值
print('ar.std() = ', ar.std())  # 求标准差
print('按列求标准差:np.std(ar, axis=0) = ', np.std(ar, axis=0))  # 按列求标准差
print('按列求标准差:np.std(ar, axis=1) = ', np.std(ar, axis=1))  # 按列求标准差
print('ar.var() = ', ar.var())  # 求方差
print('按列求方差:np.var(ar, axis=0) = ', np.var(ar, axis=0))  # 按列求方差
print('按行求方差:np.var(ar, axis=1) = ', np.var(ar, axis=1))  # 按行求方差
print('ar.sum() = ', ar.sum())  # 求和,np.sum()
print('按列求和:np.sum(ar, axis=0) = ', np.sum(ar, axis=0))  # 求和,np.sum() → axis为0,按列求和
print('按行求和:np.sum(ar, axis=1) = ', np.sum(ar, axis=1))  # 求和,np.sum() → axis为1,按行求和

打印结果:

ar =  [[0 1 2][3 4 5]]
ar.mean() =  2.5
按列求平均值:np.mean(ar, axis=0) =  [1.5 2.5 3.5]
按行求平均值:np.mean(ar, axis=1) =  [1. 4.]
ar.max() =  5
按列求最大值:np.max(ar, axis=0) =  [3 4 5]
按行求最大值:np.max(ar, axis=1) =  [2 5]
ar.min() =  0
按列求最小值:np.min(ar, axis=0) =  [0 1 2]
按行求最小值:np.min(ar, axis=1) =  [0 3]
ar.std() =  1.707825127659933
按列求标准差:np.std(ar, axis=0) =  [1.5 1.5 1.5]
按列求标准差:np.std(ar, axis=1) =  [0.81649658 0.81649658]
ar.var() =  2.9166666666666665
按列求方差:np.var(ar, axis=0) =  [2.25 2.25 2.25]
按行求方差:np.var(ar, axis=1) =  [0.66666667 0.66666667]
ar.sum() =  15
按列求和:np.sum(ar, axis=0) =  [3 5 7]
按行求和:np.sum(ar, axis=1) =  [ 3 12]

这篇关于NumPy(五):数组统计【平均值:mean()、最大值:max()、最小值:min()、标准差:std()、方差:var()、中位数:median()】【axis=0:按列运算;axis=0:按列】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128699

相关文章

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方