Pandas-高级处理(七):透视表(pivot_table)【以指定列作为行索引对另一指定列的值进行分组聚合操作】、交叉表(crosstab)【统计频率】

本文主要是介绍Pandas-高级处理(七):透视表(pivot_table)【以指定列作为行索引对另一指定列的值进行分组聚合操作】、交叉表(crosstab)【统计频率】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

交叉表与透视表的作用

  • 交叉表:计算一列数据对于另外一列数据的分组个数
  • 透视表:指定某一列对另一列的关系

一、透视表

透视表是一种可以对数据动态排布并且分类汇总的表格格式。

透视表:透视表是将原有的DataFrame的列分别作为行索引和列索引,然后对指定的列应用聚集函数

  • data.pivot_table()
  • DataFrame.pivot_table([], index=[])

比如:pd.pivot_table(data=df, index='date', values='values', aggfunc=np.sum) 以 date 列作为行索引对values列进行分组聚合(sum)操作。

import numpy as np
import pandas as pd# 透视表:pivot_table
# pd.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')date = ['2017-5-1', '2017-5-2', '2017-5-3'] * 3
rng = pd.to_datetime(date)
df = pd.DataFrame({'date': rng,'key': list('abcdabcda'),'values': np.random.rand(9) * 10})
print("df = \n", df)
print('-' * 200)# data:DataFrame对象
# values:要聚合的列或列的列表
# index:数据透视表的index,从原数据的列中筛选
# columns:数据透视表的columns,从原数据的列中筛选
# aggfunc:用于聚合的函数,默认为numpy.mean,支持numpy计算方法x1 = pd.pivot_table(data=df, values='values', index='date', aggfunc=np.sum)  # 也可以写 aggfunc='sum'
print("x1 = pd.pivot_table(data=df, values='values', index='date', aggfunc=np.sum) = \n", x1)
print('-' * 200)# 这里就分别以date、key共同做数据透视,值为values:统计不同(date,key)情况下values的和
# aggfunc=len(或者count):计数
x2 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=np.sum)
print("x2 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=np.sum) = \n", x2)
print('-' * 200)# 这里就分别以date、key共同做数据透视,值为values:统计不同(date,key)情况下values的长度【aggfunc=len:计数】
x3 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=len)
print("x3 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=len) = \n", x3)
print('-' * 200)

打印结果:

df = date key    values
0 2017-05-01   a  6.331764
1 2017-05-02   b  0.139295
2 2017-05-03   c  7.775829
3 2017-05-01   d  0.366474
4 2017-05-02   a  9.533083
5 2017-05-03   b  0.671094
6 2017-05-01   c  5.951416
7 2017-05-02   d  5.920482
8 2017-05-03   a  6.119202
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x1 = pd.pivot_table(data=df, values='values', index='date', aggfunc=np.sum) = values
date                 
2017-05-01  12.649654
2017-05-02  15.592859
2017-05-03  14.566126
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x2 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=np.sum) = values
date       key          
2017-05-01 a    6.331764c    5.951416d    0.366474
2017-05-02 a    9.533083b    0.139295d    5.920482
2017-05-03 a    6.119202b    0.671094c    7.775829
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x3 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=len) = values
date       key        
2017-05-01 a       1.0c       1.0d       1.0
2017-05-02 a       1.0b       1.0d       1.0
2017-05-03 a       1.0b       1.0c       1.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

二、交叉表

交叉表:交叉表用于计算一列数据对于另外一列数据的分组个数(用于统计分组频率的特殊透视表)

  • pd.crosstab(value1, value2)
import numpy as np
import pandas as pd# 交叉表:crosstab
# 默认情况下,crosstab计算因子的频率表,比如用于str的数据透视分析
# pd.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)df = pd.DataFrame({'A': [1, 2, 2, 2, 2],'B': [3, 3, 4, 4, 4],'C': [1, 1, np.nan, 1, 1]})
print("df = \n", df)
print('-' * 200)# 如果crosstab只接收两个Series,它将提供一个频率表。
# 用A的唯一值,统计B唯一值的出现次数
x1 = pd.crosstab(df['A'], df['B'])
print("pd.crosstab(df['A'], df['B']) = \n", x1)
print('-' * 200)# normalize:默认False,将所有值除以值的总和进行归一化 → 为True时候显示百分比
x2 = pd.crosstab(df['A'], df['B'], normalize=True)
print("x2 = pd.crosstab(df['A'], df['B'], normalize=True) = \n", x2)
print('-' * 200)# values:可选,根据因子聚合的值数组
# aggfunc:可选,如果未传递values数组,则计算频率表,如果传递数组,则按照指定计算
# 这里相当于以A和B界定分组,计算出每组中第三个系列C的值
x3 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum)
print("x3 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum) = \n", x3)
print('-' * 200)# margins:布尔值,默认值False,添加行/列边距(小计)
x4 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum, margins=True)
print("x4 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum, margins=True) = \n", x4)
print('-' * 200)

打印结果:

df = A  B    C
0  1  3  1.0
1  2  3  1.0
2  2  4  NaN
3  2  4  1.0
4  2  4  1.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
pd.crosstab(df['A'], df['B']) = B  3  4
A      
1  1  0
2  1  3
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x2 = pd.crosstab(df['A'], df['B'], normalize=True) = B    3    4
A          
1  0.2  0.0
2  0.2  0.6
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x3 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum) = B    3    4
A          
1  1.0  NaN
2  1.0  2.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x4 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum, margins=True) = B      3    4  All
A                 
1    1.0  NaN  1.0
2    1.0  2.0  3.0
All  2.0  2.0  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

三、案例分析

1 交叉表与透视表什么作用

探究股票的涨跌与星期几有关?

以下图当中表示,week代表星期几,1,0代表这一天股票的涨跌幅是好还是坏,里面的数据代表比例

可以理解为所有时间为星期一等等的数据当中涨跌幅好坏的比例

在这里插入图片描述

在这里插入图片描述

2 案例分析

2.1 数据准备

  • 准备两列数据,星期数据以及涨跌幅是好是坏数据
  • 进行交叉表计算
# 寻找星期几跟股票张得的关系
# 1、先把对应的日期找到星期几
date = pd.to_datetime(data.index).weekday
data['week'] = date# 2、假如把p_change按照大小去分个类0为界限
data['posi_neg'] = np.where(data['p_change'] > 0, 1, 0)# 通过交叉表找寻两列数据的关系
count = pd.crosstab(data['week'], data['posi_neg'])

但是我们看到count只是每个星期日子的好坏天数,并没有得到比例,该怎么去做?

  • 对于每个星期一等的总天数求和,运用除法运算求出比例
# 算数运算,先求和
sum = count.sum(axis=1).astype(np.float32)# 进行相除操作,得出比例
pro = count.div(sum, axis=0)

2.2 查看效果

使用plot画出这个比例,使用stacked的柱状图

pro.plot(kind='bar', stacked=True)
plt.show()

在这里插入图片描述

2.3 使用pivot_table(透视表)实现

使用透视表,刚才的过程更加简单

# 通过透视表,将整个过程变成更简单一些
data_pivot = data.pivot_table(['posi_neg'], index='week')
data_pivot.plot(kind="bar")
plt.show()

在这里插入图片描述

这篇关于Pandas-高级处理(七):透视表(pivot_table)【以指定列作为行索引对另一指定列的值进行分组聚合操作】、交叉表(crosstab)【统计频率】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128676

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3