Pandas-高级处理(七):透视表(pivot_table)【以指定列作为行索引对另一指定列的值进行分组聚合操作】、交叉表(crosstab)【统计频率】

本文主要是介绍Pandas-高级处理(七):透视表(pivot_table)【以指定列作为行索引对另一指定列的值进行分组聚合操作】、交叉表(crosstab)【统计频率】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

交叉表与透视表的作用

  • 交叉表:计算一列数据对于另外一列数据的分组个数
  • 透视表:指定某一列对另一列的关系

一、透视表

透视表是一种可以对数据动态排布并且分类汇总的表格格式。

透视表:透视表是将原有的DataFrame的列分别作为行索引和列索引,然后对指定的列应用聚集函数

  • data.pivot_table()
  • DataFrame.pivot_table([], index=[])

比如:pd.pivot_table(data=df, index='date', values='values', aggfunc=np.sum) 以 date 列作为行索引对values列进行分组聚合(sum)操作。

import numpy as np
import pandas as pd# 透视表:pivot_table
# pd.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')date = ['2017-5-1', '2017-5-2', '2017-5-3'] * 3
rng = pd.to_datetime(date)
df = pd.DataFrame({'date': rng,'key': list('abcdabcda'),'values': np.random.rand(9) * 10})
print("df = \n", df)
print('-' * 200)# data:DataFrame对象
# values:要聚合的列或列的列表
# index:数据透视表的index,从原数据的列中筛选
# columns:数据透视表的columns,从原数据的列中筛选
# aggfunc:用于聚合的函数,默认为numpy.mean,支持numpy计算方法x1 = pd.pivot_table(data=df, values='values', index='date', aggfunc=np.sum)  # 也可以写 aggfunc='sum'
print("x1 = pd.pivot_table(data=df, values='values', index='date', aggfunc=np.sum) = \n", x1)
print('-' * 200)# 这里就分别以date、key共同做数据透视,值为values:统计不同(date,key)情况下values的和
# aggfunc=len(或者count):计数
x2 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=np.sum)
print("x2 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=np.sum) = \n", x2)
print('-' * 200)# 这里就分别以date、key共同做数据透视,值为values:统计不同(date,key)情况下values的长度【aggfunc=len:计数】
x3 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=len)
print("x3 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=len) = \n", x3)
print('-' * 200)

打印结果:

df = date key    values
0 2017-05-01   a  6.331764
1 2017-05-02   b  0.139295
2 2017-05-03   c  7.775829
3 2017-05-01   d  0.366474
4 2017-05-02   a  9.533083
5 2017-05-03   b  0.671094
6 2017-05-01   c  5.951416
7 2017-05-02   d  5.920482
8 2017-05-03   a  6.119202
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x1 = pd.pivot_table(data=df, values='values', index='date', aggfunc=np.sum) = values
date                 
2017-05-01  12.649654
2017-05-02  15.592859
2017-05-03  14.566126
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x2 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=np.sum) = values
date       key          
2017-05-01 a    6.331764c    5.951416d    0.366474
2017-05-02 a    9.533083b    0.139295d    5.920482
2017-05-03 a    6.119202b    0.671094c    7.775829
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x3 = pd.pivot_table(df, values='values', index=['date', 'key'], aggfunc=len) = values
date       key        
2017-05-01 a       1.0c       1.0d       1.0
2017-05-02 a       1.0b       1.0d       1.0
2017-05-03 a       1.0b       1.0c       1.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

二、交叉表

交叉表:交叉表用于计算一列数据对于另外一列数据的分组个数(用于统计分组频率的特殊透视表)

  • pd.crosstab(value1, value2)
import numpy as np
import pandas as pd# 交叉表:crosstab
# 默认情况下,crosstab计算因子的频率表,比如用于str的数据透视分析
# pd.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)df = pd.DataFrame({'A': [1, 2, 2, 2, 2],'B': [3, 3, 4, 4, 4],'C': [1, 1, np.nan, 1, 1]})
print("df = \n", df)
print('-' * 200)# 如果crosstab只接收两个Series,它将提供一个频率表。
# 用A的唯一值,统计B唯一值的出现次数
x1 = pd.crosstab(df['A'], df['B'])
print("pd.crosstab(df['A'], df['B']) = \n", x1)
print('-' * 200)# normalize:默认False,将所有值除以值的总和进行归一化 → 为True时候显示百分比
x2 = pd.crosstab(df['A'], df['B'], normalize=True)
print("x2 = pd.crosstab(df['A'], df['B'], normalize=True) = \n", x2)
print('-' * 200)# values:可选,根据因子聚合的值数组
# aggfunc:可选,如果未传递values数组,则计算频率表,如果传递数组,则按照指定计算
# 这里相当于以A和B界定分组,计算出每组中第三个系列C的值
x3 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum)
print("x3 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum) = \n", x3)
print('-' * 200)# margins:布尔值,默认值False,添加行/列边距(小计)
x4 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum, margins=True)
print("x4 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum, margins=True) = \n", x4)
print('-' * 200)

打印结果:

df = A  B    C
0  1  3  1.0
1  2  3  1.0
2  2  4  NaN
3  2  4  1.0
4  2  4  1.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
pd.crosstab(df['A'], df['B']) = B  3  4
A      
1  1  0
2  1  3
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x2 = pd.crosstab(df['A'], df['B'], normalize=True) = B    3    4
A          
1  0.2  0.0
2  0.2  0.6
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x3 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum) = B    3    4
A          
1  1.0  NaN
2  1.0  2.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x4 = pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum, margins=True) = B      3    4  All
A                 
1    1.0  NaN  1.0
2    1.0  2.0  3.0
All  2.0  2.0  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

三、案例分析

1 交叉表与透视表什么作用

探究股票的涨跌与星期几有关?

以下图当中表示,week代表星期几,1,0代表这一天股票的涨跌幅是好还是坏,里面的数据代表比例

可以理解为所有时间为星期一等等的数据当中涨跌幅好坏的比例

在这里插入图片描述

在这里插入图片描述

2 案例分析

2.1 数据准备

  • 准备两列数据,星期数据以及涨跌幅是好是坏数据
  • 进行交叉表计算
# 寻找星期几跟股票张得的关系
# 1、先把对应的日期找到星期几
date = pd.to_datetime(data.index).weekday
data['week'] = date# 2、假如把p_change按照大小去分个类0为界限
data['posi_neg'] = np.where(data['p_change'] > 0, 1, 0)# 通过交叉表找寻两列数据的关系
count = pd.crosstab(data['week'], data['posi_neg'])

但是我们看到count只是每个星期日子的好坏天数,并没有得到比例,该怎么去做?

  • 对于每个星期一等的总天数求和,运用除法运算求出比例
# 算数运算,先求和
sum = count.sum(axis=1).astype(np.float32)# 进行相除操作,得出比例
pro = count.div(sum, axis=0)

2.2 查看效果

使用plot画出这个比例,使用stacked的柱状图

pro.plot(kind='bar', stacked=True)
plt.show()

在这里插入图片描述

2.3 使用pivot_table(透视表)实现

使用透视表,刚才的过程更加简单

# 通过透视表,将整个过程变成更简单一些
data_pivot = data.pivot_table(['posi_neg'], index='week')
data_pivot.plot(kind="bar")
plt.show()

在这里插入图片描述

这篇关于Pandas-高级处理(七):透视表(pivot_table)【以指定列作为行索引对另一指定列的值进行分组聚合操作】、交叉表(crosstab)【统计频率】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1128676

相关文章

MySQL 8 中的一个强大功能 JSON_TABLE示例详解

《MySQL8中的一个强大功能JSON_TABLE示例详解》JSON_TABLE是MySQL8中引入的一个强大功能,它允许用户将JSON数据转换为关系表格式,从而可以更方便地在SQL查询中处理J... 目录基本语法示例示例查询解释应用场景不适用场景1. ‌jsON 数据结构过于复杂或动态变化‌2. ‌性能要

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

MySQL逻辑删除与唯一索引冲突解决方案

《MySQL逻辑删除与唯一索引冲突解决方案》本文探讨MySQL逻辑删除与唯一索引冲突问题,提出四种解决方案:复合索引+时间戳、修改唯一字段、历史表、业务层校验,推荐方案1和方案3,适用于不同场景,感兴... 目录问题背景问题复现解决方案解决方案1.复合唯一索引 + 时间戳删除字段解决方案2:删除后修改唯一字

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

Ubuntu 24.04启用root图形登录的操作流程

《Ubuntu24.04启用root图形登录的操作流程》Ubuntu默认禁用root账户的图形与SSH登录,这是为了安全,但在某些场景你可能需要直接用root登录GNOME桌面,本文以Ubuntu2... 目录一、前言二、准备工作三、设置 root 密码四、启用图形界面 root 登录1. 修改 GDM 配

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口