Pandas-高级处理(二):连接与修补【concat(参数:axis、join、keys)、combine_first(根据index,df1的空值被df2替代)】

本文主要是介绍Pandas-高级处理(二):连接与修补【concat(参数:axis、join、keys)、combine_first(根据index,df1的空值被df2替代)】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、连接(concat):沿轴执行连接操作

pd.concat([data1, data2], axis=1):按照行或列进行连接操作:

  • axis=0为列索引;
  • axis=1为行索引;

比如我们将刚才处理好的one-hot编码与原数据连接

1、参数:axis

import pandas as pd# 连接:concats1 = pd.Series([1, 2, 3])
s2 = pd.Series([2, 3, 4])s3 = pd.Series([1, 2, 3], index=['a', 'c', 'h'])
s4 = pd.Series([2, 3, 4], index=['b', 'e', 'd'])print("s1 = \n", s1)
print('-' * 50)
print("s2 = \n", s2)
print('-' * 50)
print("s3 = \n", s3)
print('-' * 50)
print("s4 = \n", s4)
print('-' * 200)# 默认axis=0,行+行
data1 = pd.concat([s1, s2])
print("data1 = pd.concat([s1,s2]) = \n", data1)
print('-' * 200)data2 = pd.concat([s3, s4]).sort_index()
print("data2 = pd.concat([s3,s4]).sort_index() = \n", data2)
print('-' * 200)# axis=1,列+列,成为一个Dataframe
data3 = pd.concat([s3, s4], axis=1)
print("data3 = pd.concat([s3,s4], axis=1) = \n", data3)
print('-' * 200)

打印结果:

s1 = 0    1
1    2
2    3
dtype: int64
--------------------------------------------------
s2 = 0    2
1    3
2    4
dtype: int64
--------------------------------------------------
s3 = a    1
c    2
h    3
dtype: int64
--------------------------------------------------
s4 = b    2
e    3
d    4
dtype: int64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data1 = pd.concat([s1,s2]) = 0    1
1    2
2    3
0    2
1    3
2    4
dtype: int64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data2 = pd.concat([s3,s4]).sort_index() = a    1
b    2
c    2
d    4
e    3
h    3
dtype: int64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data3 = pd.concat([s3,s4], axis=1) = 0    1
a  1.0  NaN
c  2.0  NaN
h  3.0  NaN
b  NaN  2.0
e  NaN  3.0
d  NaN  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

2、参数:join

import pandas as pd# 连接方式:joins5 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s6 = pd.Series([2, 3, 4], index=['b', 'c', 'd'])
print("s5 = \n", s5)
print('-' * 50)
print("s6 = \n", s6)
print('-' * 200)data1 = pd.concat([s5, s6], axis=1)
print("data1 = pd.concat([s5,s6], axis= 1) = \n", data1)
print('-' * 200)# join:{'inner','outer'},默认为“outer”。如何处理其他轴上的索引。outer为联合和inner为交集。
data3 = pd.concat([s5, s6], axis=1, join='inner')
print("data3 = pd.concat([s5,s6], axis= 1, join='inner') = \n", data3)
print('-' * 200)

打印结果:

s5 = a    1
b    2
c    3
dtype: int64
--------------------------------------------------
s6 = b    2
c    3
d    4
dtype: int64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data1 = pd.concat([s5,s6], axis= 1) = 0    1
a  1.0  NaN
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data3 = pd.concat([s5,s6], axis= 1, join='inner') = 0  1
b  2  2
c  3  3
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Process finished with exit code 0

3、参数:keys

import pandas as pd# 连接方式:joins5 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s6 = pd.Series([2, 3, 4], index=['b', 'c', 'd'])
print("s5 = \n", s5)
print('-' * 50)
print("s6 = \n", s6)
print('-' * 200)# 覆盖列名
# keys:序列,默认值无。使用传递的键作为最外层构建层次索引
sre1 = pd.concat([s5, s6], keys=['one', 'two'])
print("sre1 = \n{0} \ntype(sre1) = {1}".format(sre1, type(sre1)))
print('-' * 50)
print("sre.index = \n", sre1.index)
print('-' * 200)# axis = 1, 覆盖列名
sre2 = pd.concat([s5, s6], axis=1)
print("sre2 = \n{0} \ntype(sre2) = {1}".format(sre2, type(sre2)))
print('-' * 50)
sre3 = pd.concat([s5, s6], axis=1, keys=['one', 'two'])
print("sre3 = \n{0} \ntype(sre3) = {1}".format(sre3, type(sre3)))

打印结果:

s5 = a    1
b    2
c    3
dtype: int64
--------------------------------------------------
s6 = b    2
c    3
d    4
dtype: int64
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
sre1 = 
one  a    1b    2c    3
two  b    2c    3d    4
dtype: int64 
type(sre1) = <class 'pandas.core.series.Series'>
--------------------------------------------------
sre.index = MultiIndex([('one', 'a'),('one', 'b'),('one', 'c'),('two', 'b'),('two', 'c'),('two', 'd')],)
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
sre2 = 0    1
a  1.0  NaN
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0 
type(sre2) = <class 'pandas.core.frame.DataFrame'>
--------------------------------------------------
sre3 = one  two
a  1.0  NaN
b  2.0  2.0
c  3.0  3.0
d  NaN  4.0 
type(sre3) = <class 'pandas.core.frame.DataFrame'>Process finished with exit code 0

二、修补(combine_first)

  • 根据index,df1的空值被df2替代

  • 如果df2的index多于df1,则更新到df1上,比如index=[‘a’,1]

  • update,直接df2覆盖df1,相同index位置

import numpy as np
import pandas as pd# 修补 pd.combine_first()df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan], [np.nan, 7., np.nan]])
df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]], index=[1, 2])
df3 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]], index=['a', 1])
print("df1 = \n", df1)
print('-' * 50)
print("df2 = \n", df2)
print('-' * 200)# 根据index,df1的空值被df2替代
data1 = df1.combine_first(df2)
print("data1 = \n", data1)
print('-' * 200)# 如果df2的index多于df1,则更新到df1上,比如index=['a',1]
data2 = df1.combine_first(df3)
print("data2 = \n", data2)
print('-' * 200)# update,直接df2覆盖df1,相同index位置
df1.update(df2)
print("df1 = \n", df1)

打印结果:

df1 = 0    1    2
0  NaN  3.0  5.0
1 -4.6  NaN  NaN
2  NaN  7.0  NaN
--------------------------------------------------
df2 = 0    1    2
1 -42.6  NaN -8.2
2  -5.0  1.6  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data1 = 0    1    2
0  NaN  3.0  5.0
1 -4.6  NaN -8.2
2 -5.0  7.0  4.0
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
data2 = 0    1    2
0   NaN  3.0  5.0
1  -4.6  1.6  4.0
2   NaN  7.0  NaN
a -42.6  NaN -8.2
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
df1 = 0    1    2
0   NaN  3.0  5.0
1 -42.6  NaN -8.2
2  -5.0  1.6  4.0Process finished with exit code 0

这篇关于Pandas-高级处理(二):连接与修补【concat(参数:axis、join、keys)、combine_first(根据index,df1的空值被df2替代)】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128673

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口