[深度学习]转置卷积(Transposed Convolution)

2024-09-02 01:32

本文主要是介绍[深度学习]转置卷积(Transposed Convolution),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.写在前面

在GAN(Generative Adversarial Nets, 直译为生成式对抗网络)中,生成器G利用随机噪声Z,生成数据。那么,在DCGAN中,这部分是如何实现呢?这里就利用到了Transposed Convolution(直译为转置卷积),也称为Fractional Strided Convolution。那么,接下来,从初学者的角度,用最简单的方式介绍什么是转置卷积,以及在Tensorflow中如何实现转置卷积。

 

二.卷积与矩阵相乘

考虑如下卷积层运算,其参数为(i=4,k=3,s=1,p=0),输出o=2。

输入:4 × 4 --> 16 × 1

输入矩阵的大小为4×4,将矩阵按照从左到右,从上到下的方式,变形为长度为16的一维向量。

示意图:

 

a00a01a02a03
a10a11a12a13
a20a21a22a23
a30a31a32a33

=>

a00
a01
a02
a03
a10
a11
a12
a13
a20
a21
a22
a23
a30
a31
a32
a33

 

 

卷积核:3 × 3 --> 4 × 16

按照卷积操作的原理,将3 × 3的矩阵,变形为4 × 16 的矩阵。

示意图:

 

w00w01w02
w10w11w21
w20w21w22

=>

 

w00w01w020w10w11w120w20w21w2200000
0w00w01w020w10w11w120w20w21w220000
0000w00w01w020w10w11w120w20w21w220
00000w00w01w020w10w11w120w20w21w22

 

输出:Y = CX, (4×16) × (16×1) = (4×1),则是一个[4,1]的输出特征矩阵,把它重新排列为2×2的输出特征矩阵,就可以得到最终的结果。

 

因此,卷积层的计算可以转换为矩阵之间相乘。对于同一个卷积核,卷积操作是Y=C × X,那么转置卷积操作可以理解为Y=Transposed(C) × T。

输入:2 × 2 --> 4 × 1

矩阵C的转置:16 × 4

输出: Y = CX, (16×4) × (4×1) = (16×1),则是一个[16,1]的输出特征矩阵,把它重新排列为4×4的输出特征矩阵,就可以达到转置卷积的效果。

 

三.直观理解

下面只考虑No zero padding, unit strides的情况。

举例,输入图像大小为2×2,想得到输出图像大小为4×4。

 

思维模式1:假设输入图像大小为4×4,输出图像大小为2×2。在正向卷积中,卷积核的高度和宽度均为3,步长s=1,边距p=0。将该卷积过程转置即可。

 

思维模式2:直接卷积。输入图像大小为2×2,卷积核的大小为3×3,步长s=1,边距p=2。

示意图如下:

 

此时,卷积核和步长均没有变化。只有边距变为2。

 

如何理解边距p=2?

可以通过卷积操作中输入与输出图像的联系来理解。例如,输出图像的左上角的像素只与输入图像的左上角的像素有关,输出图像的右下角的像素只与输入图像的右下角的像素有关。因此,卷积核在做卷积时,要输出最右最上角的一个像素,只会利用输入图像的最右最上角的一个像素,其他区域均会填充0。因此,边距p的大小为(卷积核的大小-1)。

 

本文只用于快速理解转置卷积,其他情况的理解,可参考http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html

 

四.在Tensorflow中实现转置卷积

[API]:

conv2d_transpose(value,
                     filter,
                     output_shape,
                     strides,
                     padding="SAME",
                     data_format="NHWC",
                     name=None)

Args:
    value: 四维tensor,类型为float,默认shape为[batch, height, width, in_channels]。`NHWC`格式,shape为[batch, height, width, in_channels];`NCHW` 格式,shape为[batch, in_channels, height, width]。

    filter: 四维tensor,类型与value相同,shape为[height, width, output_channels, in_channels]。in_channels必须与value中的in_channels相同。
    output_shape: 一维tensor,表示转置卷积操作输出的shape。取值为,[batch, height, width, in_channels]。
    strides:步长。
    padding:`'VALID'` 或者`'SAME'`.

令W为输入的size,F为filter的size, S为步长,为向上取整符号。

对于‘VALID’,输出的形状计算如下:

     new_height=new_width=⌈(WF+1)S

对于‘SAME’,输出的形状计算如下:

new_height=new_width=⌈WS

  举例,当步长为2时,余下的窗口只有一列。此时,’VALID‘会将剩余的列进行舍弃,’SAME‘会用0将不够的列进行填充。
    data_format:  'NHWC'或者 'NCHW'。
    name: 返回的tensor的名称(可选)。

  Returns:
    转置卷积操作的输出结果,与value具有相同类型的tensor。

  需要注意的是:

1.output的shape不能随意指定,需要是可以经过filter,strides,padding可以得到的shape。

2.tf.nn.conv2d中的filter参数为[filter_height, filter_width, in_channels, out_channels],与tf.nn.conv2d_transpose中的filter的参数顺序不同。

3.conv2d_transpose会计算output_shape能否通过给定的filter,strides,padding计算出inputs的维度,如果不能,则报错。

也就是说,conv2d_transpose中的filter,strides,padding参数,与反过程中的conv2d的参数相同。

 

举例:

# coding:utf-8
import tensorflow as tfdef main(_):# 输入4×4的单通道图像input_ = tf.constant(1., shape = [1,4,4,1])# 卷积核的大小为3×3×1,个数为1w = tf.constant(1., shape = [3,3,1,1])# 卷积:输出2×2的单通道图像result= tf.nn.conv2d(input_, w, strides=[1, 1, 1, 1], padding='VALID')# 转置卷积:输出4×4的单通道图像result2= tf.nn.conv2d_transpose(result, w, output_shape=[1,4,4,1], strides=[1, 1, 1, 1], padding='VALID')with tf.Session() as sess:init = tf.global_variables_initializer()sess.run(init)print '输入4×4的单通道图像'print sess.run(input_)print '卷积:输出2×2的单通道图像'print sess.run(result)print '转置卷积:输出4×4的单通道图像'print sess.run(result2)if __name__ == '__main__':tf.app.run()

运行结果:


 

先卷积,再进行转置卷积,得到的结果和输入不一样,但是shape是一样的,说明了卷积和转置卷积并不是完全对称的两个过程。这也是现在不使用deconvolution这个概念的原因。

五.总结

这是对于转置卷积的基本理解。

 

这篇关于[深度学习]转置卷积(Transposed Convolution)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128613

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.