前缀树原理与代码详解

2024-09-02 01:20
文章标签 代码 详解 原理 前缀

本文主要是介绍前缀树原理与代码详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前置知识
  1. 了解什么是树结构,比如二叉树、多叉树。
  2. 了解为什么推荐静态数组的方式实现各种结构。【联想到静态链表,省时间省空间】
  3. 知道哈希表怎么用。【 O ( 1 ) O(1) O(1)复杂度】

前缀树又称为字典树,英文名 t r i e trie trie

每个样本都从头结点开始,根据前缀字符或者前缀数字建出来的一棵大树,就是前缀树。

**前缀树的使用场景:**一般都用在需要信息前缀的场景中。

**前缀树的优点:**利用前缀信息选择树上的分支,可以节省大量的时间。

前缀树的缺点: 前缀树需要大量的空间来存储树上的节点。并且前缀树上是【树枝】表示具体字符(待会看例子你就明白什么意思了)

前缀树的定制: pass,end 等信息。

前缀树的类实现

前缀树Trie类的相关函数:

  • struct TrieNode{}; :前缀树的某个节点。
  • class Trie{};:整个前缀树类对象。
  • void insert(string word) :向前缀树中插入字符串word
  • int serach(string word) :在前缀树中字符串word出现的次数。
  • int prefixNumber(string prefix) {} :以prefix为开头的字符串的个数(包含出现次数)。
  • void erase(string word) {} :在前缀树中删除字符串word

前缀树的类实现代码很简单,为节省篇幅,我只给重要代码,其余代码可以在评论区找我讨论。

class Trie {
private:struct TrieNode {int pass;int end;TrieNode* nexts[26];  // next为指针数组,存的是指向子节点的指针//大小为什么是26呢?因为英文字符只有26个,这就是之前提到的“前缀树所需空间与字符种类有关”的原因TrieNode() { //无参pass = 0;end = 0;for (int i = 0; i < 26; i++) {nexts[i] = nullptr;}}TrieNode(int p, int e) { //有pass,endpass = p;end = e;for (int i = 0; i < 26; i++) {nexts[i] = nullptr;}}TrieNode(TrieNode& copyNode) {  // 拷贝构造函数this->pass = copyNode.pass;this->end = copyNode.end;for (int i = 0; i < 26; i++) {this->nexts[i] = copyNode.nexts[i];}}};TrieNode root; //root是最上层一个节点,pass 和 end 都为0。public:Trie() {}  // 构造函数,声明一个前缀树对象时只需要一个无子节点的root即可void insert(string word);int serach(string word);int prefixNumber(string prefix) {}void erase(string word) {}
};
void Trie::insert(string word) {TrieNode temp = root;  // 当前节点for (int i = 0; i < word.size(); i++) {temp.pass++;int path = word[i] - 'a'; //字符相减,本质上是ACSII码相减if (temp.nexts[i] == nullptr) {  // 如果此时的path不在前缀树中,则新建节点temp.nexts[i] = new TrieNode(0, 0);}temp = *temp.nexts[i];}//循环结束时,temp指向word的最后一个字符temp.end++;
}int Trie::serach(string word) { //找word出现了几次,其实就是先找word,//再取word最后一个字符所对应节点的end
// 从根结点开始找TrieNode temp = root;//找的过程其实就是从word[0]开始往下走,看看有没有一直到word[n-1]的分支,最后返回该分支结尾节点的endfor (int i = 0;i < word.size(); i++) {int path = word[i] - 'a';if (temp.nexts[path] == nullptr) {//没有wordreturn 0;}temp = *temp.nexts[path];}return temp.end;
}

但是前缀树用类实现的话,工作效率并不高,接下来我们来看前缀树静态数组实现。

前缀树的静态数组实现
静态数组的优势

为什么提倡使用静态数组来实现前缀树呢,这得益于静态结构比较节约空间。利用动态结构实现的前缀树只适用于单个样例,更换样例之后,之前样例对应的前缀树根本用不了,只能销毁并新消耗一些空间给当前样例,如此反复下去,通过所有样例所需要的空间是巨大的。而静态数组只需要在定义时占用足够的空间,所有样例都可以在这片空间上建立前缀树。

前缀树静态数组实现示例

向前缀树中依次插入字符串“abc”“ac”“abb”。我们需要借助一个二维矩阵和两个一维数组: T r i e [ n ] [ k ] Trie[n][k] Trie[n][k] (k是字符的种类,在此示例中,k为3), p a s s [ n ] pass[n] pass[n] e n d [ n ] end[n] end[n] 以及最关键的空间计数器cnt

在最初时刻,未插入字符时, T r i e [ n ] [ k ] Trie[n][k] Trie[n][k]以及 p a s s [ n ] , e n d [ n ] pass[n],end[n] pass[n],end[n],cnt的状态如下:

在这里插入图片描述

实现代码

我这里先直接给出实际静态数组实现代码:

class Trie {
private://静态空间static const int n = INT_MAX;static const int k = 26; //k表示字符种类个数int trie[n][k];int pass[n];int end[n];int cnt;    //cnt表示申请的空间总数目,其实也就是节点数量
public:Trie() :cnt(0) {memset(trie, 0, sizeof(trie));memset(pass, 0, sizeof(pass));memset(end, 0, sizeof(end));}void build() {cnt = 1; //建树初始便有节点1}void insert(string word) {int cur = 1; //cur指向当前节点pass[cur - 1]++; //pass按照编号进行计数,即节点编号1,2,3,...for (int i = 0;i < word.size();i++) {int path = word[i] - 'a';if (trie[cur][path] == 0) { //无分支则新建分支trie[cur][path] = ++cnt;cur = cnt;pass[cur - 1]++;}else {cur = trie[cur][path]; //trie[cur][path]存储的是path分支节点的编号pass[cur - 1]++;}}end[cur - 1]++;}//查找的原理在类实现中已经讲过:找到最后一个节点的end即可。int search(string word) {int cur = 1;for (int i = 0;i < word.size();i++) {int path = word[i] - 'a';if (trie[cur][path] == 0)   return 0;cur = trie[cur][path];}return end[cur - 1];}int prefixNumber(string word) {int cur = 1;for (int i = 0;i < word.size();i++) {int path = word[i] - 'a';if (trie[cur][path] = 0) return 0;cur = trie[cur][path];}return pass[cur - 1];}void erase(string word) {if (search(word) == 0)   return;int cur = 1;pass[cur - 1]--;for (int i = 0;i < word.size();i++) {int path = word[i] - 'a';cur = trie[cur][path];pass[cur - 1]--;}end[cur - 1]--;}
};

插入字符串“abc”“ac”“abb”之后, T r i e [ n ] [ k ] Trie[n][k] Trie[n][k]以及 p a s s [ n ] , e n d [ n ] pass[n],end[n] pass[n],end[n],cnt的状态如下:

在这里插入图片描述

这篇关于前缀树原理与代码详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128601

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1