<C++> 红黑树

2024-09-02 00:28
文章标签 c++ 红黑树

本文主要是介绍<C++> 红黑树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. 红黑树的概念

2. 红黑树的性质

3. 红黑树节点的定义

4. 红黑树的插入操作

5. 红黑树的验证

6. 红黑树与AVL树的比较

7. 红黑树的删除

        红黑树比AVL树更优一些,因为AVL要求太严格,左右高度差不超过1,而红黑树采用颜色来控制,只要求最长路径不超过最短路径的2倍,属于近似平衡

1. 红黑树的概念

        红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是RedBlack。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩 ,因而是接近平衡的。

        在高度方面大致是2logN,比AVL高2倍,但是logN效率很高,对于10亿的数据量,也仅仅是30高度和60高度,这种常数级的效率几乎完全相同!

        所以,红黑树的优点就是高度没有AVL要求那么严格,AVL由于高度的严格要求,它的插入和删除需要大量的旋转,而红黑树就少许多,这就是红黑树的优势 

2. 红黑树的性质

  1. 每个结点不是红色就是黑色

  2. 根节点是黑色的 

  3. 如果一个节点是红色的,则它的两个孩子结点必须是黑色的,即任何路径都没有连续的红色节点

  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 ,即每条路径上黑色节点的数量相等

  5. 每个叶子结点(NIL节点)都是黑色的(此处的叶子结点指的是空结点

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?

  1. 如果有一个路径它的节点数最少,那么这个最短路径一定是全黑的!红色的出现会导致节点数增加
  2. 对于最长路径一定是红黑相间的!因为每一条路径的黑色节点数量相同,并且红色的孩子一定是黑色,所以就可以在黑色节点之间插入红色,来增加节点数

3. 红黑树节点的定义

template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:private:Node* root = nullptr;
}

思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?

        新增节点要为红色,因为红色只会影响当前路径,但是如果是黑色,那么会影响所有路径,因为每个路径黑节点数量要相同。所以我们挑一个影响代价最小的方案,即新增节点为红色,此时只需要修改当前路径即可保证结构正确

4. 红黑树的插入操作

        检测新节点插入后,红黑树的性质是否造到破坏

        因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,要开始调色,此时需要对红黑树分情况来讨论:

约定:cur为当前节点,p为父节点(parent),g为祖父节点(grandfather),u为叔叔节点(uncle)

情况一: cur为红,p为红,g为黑,u存在且为红(uncle存在且为红:变色,继续向上更新

解决方式: p,u 改为黑, g 改为红,然后把 g 当成 cur ,继续向上调整

 

	bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED;if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// u存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续向上处理cur = grandfather;parent = cur->_parent;}}}

情况二: cur为红,p为红,g为黑,u不存在(uncle不存在:旋转+变色)

 

旋转策略:

  • pg的左孩子,curp的左孩子,则进行右单旋转
  • pg的右孩子,curp的右孩子,则进行左单旋转
  • pg变色:p变黑,g变红

 

else // u不存在 或 存在且为黑
{if (cur == parent->_left){//     g//   p// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//     g//   p//		cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;
}

情况三: cur为红,p为红,g为黑,u为黑 (uncle存在且为黑:旋转+变色)(旋转就是AVL中单旋、双旋操作)

 

        uncle是黑的,表明cur一定不是新增节点,因为每条路径一定的黑节点数量一定相同,所以此情况一定是从下往上更新上来的) 

旋转+变色策略:

  • p为g的左孩子,cur为p的右孩子,则针对p做左单旋转,再对g做右单旋
  • p为g的右孩子,cur为p的左孩子,则针对p做右单旋转,再对g做左单旋
  • pg的左孩子,curp的左孩子,则进行右单旋转
  • pg的右孩子,curp的右孩子,则进行左单旋转(变为情况二)
  • 根据单旋还是双旋进行变色。单旋:pg变色,p变黑,g变红;双旋:cur变黑,g变红

情况二、三都不需要往上继续更新,因为这个结构更新后的根是黑色,不管上面存不存在、或者存在,都不会影响

 

 

小结:

  • 新增节点应为红色
  • 出现连续的红色时,根据uncle分三种情况
  • 如果不是旋转的情况,循环往上继续更新(如果继续出现连续的红才会进入循环);如果是旋转的情况,不用继续往上更新
#pragma once
#pragma once
#include<iostream>
using namespace std;enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED;if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// u存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续向上处理cur = grandfather;parent = cur->_parent;}else // u不存在 或 存在且为黑{if (cur == parent->_left){//     g//   p// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//     g//   p//		cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else // parent == grandfather->_right{Node* uncle = grandfather->_left;// u存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续向上处理cur = grandfather;parent = cur->_parent;}else{if (cur == parent->_right){// g//	  p//       cRotateL(grandfather);grandfather->_col = RED;parent->_col = BLACK;}else{// g//	  p// cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateL(Node* parent){++_rotateCount;Node* cur = parent->_right;Node* curleft = cur->_left;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;Node* ppnode = parent->_parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}}void RotateR(Node* parent){++_rotateCount;Node* cur = parent->_left;Node* curright = cur->_right;parent->_left = curright;if (curright)curright->_parent = parent;Node* ppnode = parent->_parent;cur->_right = parent;parent->_parent = cur;if (ppnode == nullptr){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}}bool CheckColour(Node* root, int blacknum, int benchmark){if (root == nullptr){if (blacknum != benchmark)return false;return true;}if (root->_col == BLACK){++blacknum;}if (root->_col == RED && root->_parent && root->_parent->_col == RED){cout << root->_kv.first << "出现连续红色节点" << endl;return false;}return CheckColour(root->_left, blacknum, benchmark)&& CheckColour(root->_right, blacknum, benchmark);}bool IsBalance(){return IsBalance(_root);}bool IsBalance(Node* root){if (root == nullptr)return true;if (root->_col != BLACK){return false;}// 基准值int benchmark = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK)++benchmark;cur = cur->_left;}return CheckColour(root, 0, benchmark);}int Height(){return Height(_root);}int Height(Node* root){if (root == nullptr)return 0;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}private:Node* _root = nullptr;public:int _rotateCount = 0;
};

 

5. 红黑树的验证

检验:

  • 根节点是黑色
  • 不能有连续的红节点(以子判父更方便,如果从父亲视角看,要分问情况)
  • 每条路径的黑节点数量相等(先算出一个基准值,例如最左路径上黑节点的数量)
	bool CheckColour(Node* root, int blacknum, int benchmark){if (root == nullptr){if (blacknum != benchmark)return false;return true;}if (root->_col == BLACK){++blacknum;}if (root->_col == RED && root->_parent && root->_parent->_col == RED){cout << root->_kv.first << "出现连续红色节点" << endl;return false;}return CheckColour(root->_left, blacknum, benchmark)&& CheckColour(root->_right, blacknum, benchmark);}bool IsBalance(){return IsBalance(_root);}bool IsBalance(Node* root){if (root == nullptr)return true;if (root->_col != BLACK){return false;}// 基准值int benchmark = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK)++benchmark;cur = cur->_left;}return CheckColour(root, 0, benchmark);}int Height(){return Height(_root);}int Height(Node* root){if (root == nullptr)return 0;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}
int main()
{const int N = 10000000;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; i++){v.push_back(i);}RBTree<int, int> rbt;for (auto e : v){rbt.Insert(make_pair(e, e));//cout << "Insert:" << e << "->" << t.IsBalance() << endl;}return 0;
}

6. 红黑树与AVL树的比较

        红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( logN ),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多

int main()
{const int N = 100000;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; i++){v.push_back(rand());}RBTree<int, int> rbt;for (auto e : v){rbt.Insert(make_pair(e, e));//cout << "Insert:" << e << "->" << t.IsBalance() << endl;}cout << rbt.IsBalance() << endl;cout << rbt.Height() << endl;cout << rbt._rotateCount << endl;AVLTree<int, int> avlt;for (auto e : v){avlt.Insert(make_pair(e, e));//cout << "Insert:" << e << "->" << t.IsBalance() << endl;}cout << avlt.IsBalance() << endl;cout << avlt.Height() << endl;cout << avlt._rotateCount << endl;return 0;
}

红黑树的应用

1. C++ STL -- map/setmutil_map/mutil_set

2. Java

3. linux内核

4. 其他一些库

7. 红黑树的删除 

红黑树 - _Never_ - 博客园 (cnblogs.com)

这篇关于<C++> 红黑树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128474

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元