使用 Eigen 库中的 Kronecker 积运算

2024-09-02 00:04

本文主要是介绍使用 Eigen 库中的 Kronecker 积运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在数值计算和线性代数的众多应用中,Kronecker 积(Kronecker Product)是一种常用的矩阵运算。Eigen 是一个高性能的 C++ 数值计算库,广泛用于科学计算和工程应用中。在 Eigen 库中,Kronecker 积运算属于不常用的扩展功能,因此被放置在 unsupported 模块中。

本文将介绍如何在 Eigen 中使用 Kronecker 积,并解释为什么这个功能位于 unsupported 模块中。

什么是 Kronecker 积?

Kronecker 积是两个矩阵之间的二元运算,其结果是一个更大的矩阵。具体来说,如果矩阵 A 的尺寸为 m x n,矩阵 B 的尺寸为 p x q,那么 Kronecker 积A ⊗ B的结果矩阵将具有尺寸 mp x nq。

例如,假设我们有以下两个矩阵:

A = [1 2][3 4]B = [0 5][6 7]

它们的 Kronecker 积 A ⊗ B 结果为:

A ⊗ B = [ 0  5  0 10][ 6  7 12 14][ 0 15  0 20][18 21 24 28]

在 Eigen 中使用 Kronecker 积

在 Eigen 库中,Kronecker 积函数 kroneckerProduct 位于 unsupported 模块中,因此需要引入特定的头文件。

引入头文件

首先,需要在代码中包含以下头文件:

#include <unsupported/Eigen/KroneckerProduct>

注意: 如果你的项目使用了 Eigen,通常你会包含 Eigen 的核心模块头文件,例如:

#include <Eigen/Dense>

然而,kroneckerProduct 函数并不在这些核心模块中,而是在 unsupported 模块中提供,因此需要单独包含。

示例代码

下面是一个完整的示例,演示如何在 Eigen 中计算两个矩阵的 Kronecker 积:

#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/KroneckerProduct>int main() {Eigen::Matrix2d A;A << 1, 2,3, 4;Eigen::Matrix2d B;B << 0, 5,6, 7;Eigen::Matrix4d C = Eigen::kroneckerProduct(A, B);std::cout << "Kronecker Product of A and B is:\n" << C << std::endl;return 0;
}

编译并运行这个程序,将得到如下输出:

Kronecker Product of A and B is:0  5  0 106  7 12 140 15  0 20
18 21 24 28

具体计算过程

给定矩阵:

A = [ 1 2 3 4 ] A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A=[1324]

B = [ 0 5 6 7 ] B = \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} B=[0657]

Kronecker 积 A ⊗ B A \otimes B AB 计算步骤如下:

  1. 矩阵 A A A 的元素分别为:

a 11 = 1 , a 12 = 2 , a 21 = 3 , a 22 = 4 a_{11} = 1, \quad a_{12} = 2, \quad a_{21} = 3, \quad a_{22} = 4 a11=1,a12=2,a21=3,a22=4

  1. 矩阵 B B B 为:

B = [ 0 5 6 7 ] B = \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} B=[0657]

  1. 计算每个块矩阵:

a 11 B = 1 ⋅ [ 0 5 6 7 ] = [ 0 5 6 7 ] a_{11}B = 1 \cdot \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} a11B=1[0657]=[0657]

a 12 B = 2 ⋅ [ 0 5 6 7 ] = [ 0 10 12 14 ] a_{12}B = 2 \cdot \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 10 \\ 12 & 14 \end{bmatrix} a12B=2[0657]=[0121014]

a 21 B = 3 ⋅ [ 0 5 6 7 ] = [ 0 15 18 21 ] a_{21}B = 3 \cdot \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 15 \\ 18 & 21 \end{bmatrix} a21B=3[0657]=[0181521]

a 22 B = 4 ⋅ [ 0 5 6 7 ] = [ 0 20 24 28 ] a_{22}B = 4 \cdot \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 20 \\ 24 & 28 \end{bmatrix} a22B=4[0657]=[0242028]

  1. 将这些块矩阵排列成最终的 Kronecker 积矩阵:

A ⊗ B = [ a 11 B a 12 B a 21 B a 22 B ] = [ 0 5 0 10 6 7 12 14 0 15 0 20 18 21 24 28 ] A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{bmatrix} = \begin{bmatrix} 0 & 5 & 0 & 10 \\ 6 & 7 & 12 & 14 \\ 0 & 15 & 0 & 20 \\ 18 & 21 & 24 & 28 \end{bmatrix} AB=[a11Ba21Ba12Ba22B]= 0601857152101202410142028

总结

在这里插入图片描述

Eigen 库为 C++ 提供了强大的数值计算功能,其中包括通过unsupported/Eigen/KroneckerProduct 头文件引入的 Kronecker 积运算。

这篇关于使用 Eigen 库中的 Kronecker 积运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128429

相关文章

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数