【高阶数据结构】图的应用--最小生成树

2024-09-02 00:04

本文主要是介绍【高阶数据结构】图的应用--最小生成树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、最小生成树

连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。

若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边。因此构造最小生成树的准则有三条:

1.只能使用图中的边来构造最小生成树

2.只能使用恰好n-1条边来连接图中的n个顶点

3.选用的n-1条边不能构成回路

构造最小生成树的方法:Kruskal算法和Prim算法。这两个算法都采用了逐步求解的贪心策略。

贪心算法:是指在问题求解时,总是做出当前看起来最好的选择。也就是说贪心算法做出的不是整体最优的的选择,而是某种意义上的局部最优解。贪心算法不是对所有的问题都能得到整体最优解。

二、Kruskal算法

任给一个有n个顶点的连通网络N={V,E},首先构造一个由这n个顶点组成、不含任何边的图G={V,NULL},其中每个顶点自成一个连通分量,其次不断从E中取出权值最小的一条边(若有多条任取其一),若该边的两个顶点来自不同的连通分量,则将此边加入到G中。如此重复,直到所有顶点在同一个连通分量上为止。

核心:每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树。

在这里插入图片描述

在图23-1上执行Kruskal算法的过程。加了阴影的边属于不断增长的森林A。该算法按照边的权重大小依次进行考虑。箭头指向的边是算法每一步所考察的边。如果该条边将两棵不同的树连接起来,它就被加入到森林里,从而完成对两棵树的合并

我们对使用领接矩阵实现的图来查找最小生成树

代码实现:

// 临接矩阵
namespace Matrix
{template <class V, class W, W MAX_W = INT_MAX, bool Direction = false>class Graph{typedef Graph<V, W, MAX_W, Direction> Self;private:std::vector<V> _vertexs;             // 顶点集合std::map<V, size_t> _vIndexMap;      // 顶点的下标映射关系std::vector<std::vector<W>> _matrix; // 存储边集合的矩阵struct Edge{size_t _srci;size_t _dsti;W _w;Edge(size_t srci, size_t dsti, const W &w): _srci(srci), _dsti(dsti), _w(w){}bool operator>(const Edge &e) const{return _w > e._w;}};W Kruskal(Self &minTree){size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._vIndexMap = _vIndexMap;minTree._matrix.resize(n);for (int i = 0; i < n; i++){minTree._matrix[i].resize(n, MAX_W);}std::priority_queue<Edge, std::vector<Edge>, std::greater<Edge>> minqueue;for (size_t i = 0; i < n; i++){for (size_t j = 0; j < n; j++){if (i < j && _matrix[i][j] != MAX_W){minqueue.push({i, j, _matrix[i][j]});}}}// 选出n-1条边size_t size = 0;W totalW = W();UnionFindSet ufs(n);while (minqueue.size()){Edge min = minqueue.top();minqueue.pop();if (ufs.InSet(min._srci, min._dsti) == false){std::cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << std::endl;minTree._AddEdge(min._srci, min._dsti, min._w);ufs.Union(min._srci, min._dsti);++size;totalW += min._w;}else{std::cout << "构成环:";std::cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << std::endl;}}if (size == n - 1)return totalW;elsereturn W();}};
}

三、Prim算法

与Kruskal算法类似,Prim 算法也是23.1节所讨论的通用最小生成树算法的一个特例。Prim 算法的工作原理与Dijkstra的最短路径算法相似(该算法将在24.3节中讨论)。Prim算法所具有的一个性质是集合A中的边总是构成一裸树。如图23-5所示,这梯树从一个任意的根结点r开始,一直长大到覆盖V中的所有结点时为止。算法每一步在连接集合A和A之外的结点的所有边中,选择一条轻量级边加入到A中。根据推论23.2,这条规则所加人的边都是对A安全的边。因此,当算法终止时,A中的边形成一棵最小生成树。本策略也属于贪心策略,因为每一步所加人的边都必须是使树的总权重增加量最小的边。

在这里插入图片描述

代码实现:

// 临接矩阵
namespace Matrix
{template <class V, class W, W MAX_W = INT_MAX, bool Direction = false>class Graph{typedef Graph<V, W, MAX_W, Direction> Self;private:std::vector<V> _vertexs;             // 顶点集合std::map<V, size_t> _vIndexMap;      // 顶点的下标映射关系std::vector<std::vector<W>> _matrix; // 存储边集合的矩阵W Prim(Self &minTree, const V &v){minTree._vertexs = _vertexs;minTree._vIndexMap = _vIndexMap;int n = _vertexs.size();minTree._matrix.resize(n);for (int i = 0; i < n; i++){minTree._matrix[i].resize(n, MAX_W);}size_t srci = GetVertexIndex(v);// 标记数组,将顶点分为两个部分,一个是一个加入最小生成树的部分,一个是未加入的std::vector<bool> X(n, false);std::vector<bool> Y(n, true);X[srci] = true;Y[srci] = false;std::priority_queue<Edge, std::vector<Edge>, std::greater<Edge>> minq;for (size_t i = 0; i < n; i++){if (_matrix[srci][i] != MAX_W){minq.push({srci, i, _matrix[srci][i]});}}size_t size = 0;W totalW = W();while (minq.size()){Edge min = minq.top();minq.pop();size_t srci = min._srci;size_t dsti = min._dsti;if (X[min._dsti]){std::cout << "构成环:";std::cout << _vertexs[srci] << "->" << _vertexs[dsti] << ":" << _matrix[srci][dsti] << std::endl;}else{minTree._AddEdge(srci, dsti, _matrix[srci][dsti]);std::cout << _vertexs[srci] << "->" << _vertexs[dsti] << ":" << min._w << std::endl;X[dsti] = true;Y[dsti] = false;++size;totalW += _matrix[srci][dsti];if (size == n - 1)break;for (size_t i = 0; i < n; i++){if (_matrix[dsti][i] != MAX_W && Y[i]){minq.push({dsti, i, _matrix[dsti][i]});}}}}if (size == n - 1){return totalW;}elsereturn W();}};
}

测试代码:

void TestGraphMinTree()
{const char str[] = "abcdefghi";Graph<char, int> g(str, strlen(str));g.AddEdge('a', 'b', 4);g.AddEdge('a', 'h', 8);// g.AddEdge('a', 'h', 9);g.AddEdge('b', 'c', 8);g.AddEdge('b', 'h', 11);g.AddEdge('c', 'i', 2);g.AddEdge('c', 'f', 4);g.AddEdge('c', 'd', 7);g.AddEdge('d', 'f', 14);g.AddEdge('d', 'e', 9);g.AddEdge('e', 'f', 10);g.AddEdge('f', 'g', 2);g.AddEdge('g', 'h', 1);g.AddEdge('g', 'i', 6);g.AddEdge('h', 'i', 7);Graph<char, int> kminTree;std::cout << "Kruskal:" << g.Kruskal(kminTree) << std::endl;kminTree.Print();std::cout << std::endl<< std::endl;Graph<char, int> pminTree;std::cout << "Prim:" << g.Prim(pminTree, 'a') << std::endl;pminTree.Print();std::cout << std::endl;for (size_t i = 0; i < strlen(str); ++i){std::cout << "Prim:" << g.Prim(pminTree, str[i]) << std::endl;}
}

这篇关于【高阶数据结构】图的应用--最小生成树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128426

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事