几个小时 几行代码 简单 直白 tensorflow 分布式代码实战

本文主要是介绍几个小时 几行代码 简单 直白 tensorflow 分布式代码实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

北京又下雪了,这个2020年开启的方式太沉重了。

注意,市面上普遍的tf分布式代码,我实测都有一个问题,如果你租用GPU资源请务必警惕这个问题会让你白花钱。如果你用的自己的资源,那应该是没有太大问题的。具体请看(https://blog.csdn.net/u013249853/article/details/104385793

好烦,每次发文都要审核,链接就得等他审核完了上,好麻烦,看来我得另外找个网站写博客了。

我本人对tf并不精通。分布式听起来也很复杂。而且我要做的是将deeplabv3+的代码做成分布式的。也就是多个节点,相当于用两台服务器的gpu。听起来很麻烦,实际上居然很简单。而我自己也是花了几个小时从什么都不懂到代码跑起来。

这个教程目的是以tensorflow为例,将分布式细节写出来,补充一下网上教程没有的东西。

很多教程写了特别长的文字,我认为画图更简单。本教程尽量简短,好懂,并且有代码。只是基础教程。

理论(特短,够用)

台电脑=服务器=server是一个节点,包含了个GPU。首先分布式的方式就是让台电脑上的gpu共同干活。

分布式工作分为两个部分,parameter server(ps)以及worker。眼熟ps与worker,因为这个是工作,每个server,都得干活,所以只能是从这两个工作里面选择。ps的工作类似于存储参数,而损失的计算,梯度的决定都是有worker进行的。这个对代码的影响就是,ps节点其实完全可以由cpu来做。worker必须由gpu做。

 

整体结构如图:一共四个sever,每个sever假设包含4个GPU,下图一共16个GPU。两个server工作是ps,两个sever的工作是worker,这个name其实没有在代码中配置,所以不用理会。server同做一个工作,也需要区分的,所以又引入了task,并且有task id。这里只是演示一下job(ps,worker)和server(节点)的关系。

代码

代码的讲解是踩点来的。就是怎么用代码互相交流。

从理论上看,我们需要一些节点,并且给他们分配工作。

所以做一下程序入口接受参数(节点都是是谁,给什么工作了),我比较喜欢接收参数,不喜欢在代码里面写死。因为flags是tf基础,不想解释增加长度。

每个节点都得被单独通知,并且单独运行,这意味着如果你有一个ps,两个worker(一般用一个ps即可),你得在bash命令里:

python train.py --ps都谁(ps_hosts) --worker都谁(woker_hosts) --我被分配干啥(job_name) --我是第几个干这活的(task_index)

python train.py --ps都谁(ps_hosts) --worker都谁(woker_hosts) --我被分配干啥(job_name) --我是第几个干这活的(task_index)

python train.py --ps都谁(ps_hosts) --worker都谁(woker_hosts) --我被分配干啥(job_name) --我是第几个干这活的(task_index)

就是输入三次,跑三次,同时。ps和worker都会等你输完了在一起工作,毕竟要等同伴。

下面是一个节点需要知道的消息。

flags = tf.app.flags
flags.DEFINE_integer('task_index', 0, 'The task ID.0 then is cheif session')
flags.DEFINE_string("ps_hosts", "g0101:2222", "ps hosts")
flags.DEFINE_string("worker_hosts", "g0101:2223,g0102:2224", "worker hosts")
flags.DEFINE_string("job_name", "worker", "'ps' or'worker'")

这四个东西怎么用需要看下面的代码,不要着急。不过我们可以看出,上面有一个ps server(节点)g0101:2222(可以当做该节点的名字),以及两个worker节点,g0101:2223+g0102:2224. 这里需要插播一下节点工作的时候是知道都有哪些节点一起工作,并且大家都是做什么任务的。

 

传参的时候是这样写的,这个节点需要知道的消息:

下面分别写下ps工作节点与worker工作节点传参。

ps:

python "${WORK_DIR}"/train_cloud.py \  
--ps_hosts="g0101:2222" \--worker_hosts="g0101:2223,g0102:2224" \--job_name="ps" \--task_index="0"

 然后节点就知道自己被分配了ps工作,只有一个ps节点(ps_hosts就一个,逗号是分隔符)。自己就是第一个。还有两个worker给自己打工

worker1:

python "${WORK_DIR}"/train_cloud.py \  
--ps_hosts="g0101:2222" \--worker_hosts="g0101:2223,g0102:2224" \--job_name="worker" \--task_index="1"

然后节点就知道自己被分配了worker工作,并且知道有两个worker,自己是第二个(task_index="1",计数从零开始,所以是第二个)。并且知道ps节点是谁。worker0当然就是类比着来。

python "${WORK_DIR}"/train_cloud.py \  
--ps_hosts="g0101:2222" \--worker_hosts="g0101:2223,g0102:2224" \--job_name="worker" \--task_index="0"

这里注意,我写的ps单独用了一个节点,如果想节省一下gpu,那么就写:

ps:

CUDA_VISIBLE_DEVICES=""
python "${WORK_DIR}"/train_cloud.py \  
--ps_hosts="g0101:2223" \--worker_hosts="g0101:2223,g0102:2224" \--job_name="ps" \--task_index="0"

worker1:

python "${WORK_DIR}"/train_cloud.py \  
--ps_hosts="g0101:2223" \--worker_hosts="g0101:2223,g0102:2224" \--job_name="worker" \--task_index="1"

注意看CUDA_VISIBLE_DEVICES,这时ps用的是worker1的CPU了。

 

然后需要建立一个cluster。需要用的是

  ps_hosts=FLAGS.ps_hosts.split(",")worker_hosts=FLAGS.worker_hosts.split(",")cluster=tf.train.ClusterSpec({"ps":ps_hosts,"worker":worker_hosts})server=tf.train.Server(cluster,job_name=FLAGS.job_name,task_index=FLAGS.task_index)if FLAGS.job_name == "ps":server.join()elif FLAGS.job_name =="worker":graph = tf.Graph()with graph.as_default():with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % (FLAGS.task_index),cluster=cluster)):

with下面就是正常的dataset的设置,config的设置,并不是分布式独有的,所以省略了。而且是deeplab代码(改完可跑),所以建议看tf官方简单实例,一定看完哦,根本不长。

然后在session 里面的参数:master和一般设置不一样。

            with tf.train.MonitoredTrainingSession(master=server.target,

运行

输入的命令大家已经看到了,的确是需要输三遍bash 命令运行同一个python,但是由于分配的工作不同,所以是不一样的。

就是这个,还差两个worker。

python "${WORK_DIR}"/train_cloud.py \  
--ps_hosts="g0101:2222" \--worker_hosts="g0101:2223,g0102:2224" \--job_name="ps" \--task_index="0"

然后节点具体叫什么,这个需要问你的服务器管理员。你用我这个肯定不好使。

batchsize等的设置,每个节点,都要单独配置参数,比如worker0包含了一个GPU,worker1包含了两个GPU,那你的batchsize肯定是worker1更多。这个时候就把两个节点视作独立的。因为他们只能看到自己内部包含了什么设备(GPU),他虽然知道有个worker0和自己一起工作,却不知道worker0内部有什么设备。

输出与检验

虽然运行成功,但是怎么验证是否一起工作了呢?万一是各做各的就完蛋了。所以我又用deeplabv3+做了验证,如果batchsize不足的话,batch normalization的存在会使结果难看。

所以其输出是有三个ps0.out,worker0.out,worker1.out

我截一下图:

ps0,我用的就是cpu

 

worker0

worker1:

因为其实我有四个worker,这里只贴了两个。

参考:

https://www.youtube.com/embed/la_M6bCV91M

https://github.com/tensorflow/examples/blob/master/community/en/docs/deploy/distributed.md

https://henning.kropponline.de/2017/03/19/distributing-tensorflow/

https://zhuanlan.zhihu.com/p/35083779

https://www.jianshu.com/p/fdb93e44a8cc

这篇关于几个小时 几行代码 简单 直白 tensorflow 分布式代码实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128401

相关文章

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061