回溯法-0/1背包问题

2024-09-01 22:12
文章标签 问题 背包 回溯

本文主要是介绍回溯法-0/1背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是回溯法?

回溯法是一种搜索算法,它通过深度优先搜索的方式来解决决策问题。它从根节点开始,逐步扩展节点,直到找到所有可能的解。

回溯法的基本思想

  1. 开始节点:从根节点出发,这个节点是解空间的起点。
  2. 扩展节点:在当前节点上,选择一个方向继续搜索,这个方向会形成一个新的节点。
  3. 活节点与死节点:如果新节点有更多选择,它就是活节点;如果所有选择都已尝试,它就是死节点。
  4. 回溯:如果当前路径不是解,回溯到上一个活节点,尝试其他选择。

优化方法

为了提高搜索效率,我们使用两种剪枝技术:

  1. 剪枝一:如果当前物品的加入使得总重量超过背包容量,停止搜索这个方向。
  2. 剪枝二:如果剩余物品即使全部加入,也不能超过当前已知的最优解,停止搜索这个方向。

什么是0/1背包问题?

想象一下,你有一个背包,容量有限。你面前有n种不同的物品,每种物品都有自己的重量和价值。你的目标是选择一些物品放入背包,使得背包里物品的总价值最大,但总重量不能超过背包的容量。

算法描述

给定物品数量n,物品i的重量是wi>0,其价值为vi>0,背包的容量为c。我们的目标是找到一种物品组合,使得总价值最大,且总重量不超过c。

步骤

  1. 初始化:设置一个数组或列表来记录选择的物品。
  2. 递归函数:定义一个递归函数,接收当前物品索引、当前重量和当前价值作为参数。
  3. 边界条件:如果当前重量超过背包容量或已处理完所有物品,回溯。
  4. 选择与不选择:对于每种物品,尝试选择它或不选择它,然后递归调用函数。
  5. 更新最优解:每次找到一个解时,比较并更新已知的最优解。

0/1背包问题算法设计

算法目标

我们的目标是找出一个解向量 ( xi ),其中 ( xi = 0 ) 表示不放入物品 ( i ),( xi = 1 ) 表示放入物品 ( i )。

递归函数 Backtrack

  1. 叶子节点:如果 ( i > n ),我们到达了一个新的物品装包方案,更新最优价值。
  2. 扩展节点:如果 ( i < n ),当前节点在排列树的第 (i-1) 层,递归搜索子树,剪去不满足约束的节点。

实例

输入

  • 物品价值 ( V = {12, 11, 9, 8} )
  • 物品重量 ( W = {8, 6, 4, 3} )
  • 背包容量 ( B = 13 )

可行解

  • 解1: ( x = <0, 1, 1, 1> ) 选入物品2, 3, 4,总价值28,总重量13
  • 解2: ( x = <1, 0, 1, 0> ) 选入物品1, 3,总价值21,总重量12

最优解

  • 最优解: ( x = <0, 1, 1, 1> )

定义

  • ( CW )(Current Weight): 当前重量
  • ( CP )(Current Price): 当前价值

执行步骤

  1. 计算单位价值:降序排列物品。
  2. 从根节点出发:根节点代表当前扩展节点。
  3. 搜索左子树:判断物品是否装入背包。
    • 可行,更新 ( CW ) 和 ( CP ),继续遍历。
    • 不可行,回溯,尝试右子树。
  4. 计算上界 ( bound(i) ):
    • 若 ( bound(i) < bestp ),剪枝。
    • 否则,继续搜索。
  5. 叶子节点:比较 ( CP ) 与 ( bestp ),更新 ( bestp )。
  6. 遍历所有节点:完成搜索。

举例说明

已知 ( p = {45, 25, 24} ), ( w = {16, 15, 15} ), 背包容量为30,求最优价值。

步骤1:计算单位价值并排序

首先,我们需要计算每个物品的单位价值,即每个物品的价值除以其重量。然后,我们将物品按照单位价值从高到低进行排序。在这个例子中,物品的原始顺序恰好是单位价值降序排列。

步骤2:开始遍历并判断是否装入背包

我们将按照排序后的物品顺序,逐个考虑每个物品是否装入背包。

遍历过程说明

  • B1, B2:代表同一种物品B的不同节点。
  • C1, C2, C3, C4:代表同一种物品C的不同节点。
  • 这样的表示方法有助于我们区分在遍历过程中的不同节点。

具体步骤

  1. 考虑物品B1:首先尝试将物品B1装入背包。如果B1的重量加上当前背包重量(CW)不超过背包总容量(本例中为30),则B1可以装入背包。此时,背包重量更新为CW = 16,背包价值更新为CP = 45。

  2. 遍历B1的左子树:继续考虑B1后面的物品,如果剩余容量不足以装入下一个物品,我们就剪去这条路径。

  3. 进入B1的右子树:如果B1可以装入,我们继续考虑其他物品。在右子树中,我们到达物品C2,并计算上界值bound(i)。如果bound(i)大于当前最优价值bestp,则继续向下遍历。

  4. 到达叶子节点:如果在遍历中到达叶子节点,我们比较当前价值(CP)与最优价值(bestp),如果CP更大,则更新最优价值。

  5. 回溯:如果发现某条路径不可能产生更好的解,我们回溯到上一个决策点,尝试其他可能性。

示例遍历

  • 装入物品B1,CW = 16, CP = 45。
  • 尝试装入物品C1,但因剩余容量不足而剪枝。
  • 继续考虑C2,计算bound(i)=45+(25/15)**14=45+1.66*14=68.3,大于当前最优价值45,继续遍历。
  • 到达C2的叶子节点,记录最优价值bestp = 45。
  • 回溯,尝试其他物品B2,更新bound(i)为49,继续遍历。
  • 装入物品C3,CW = 15, CP = 25,继续考虑下一个物品。
  • 装入物品D5,CW = 30, CP = 49,更新最优价值bestp = 49。
  • 继续回溯,考虑其他可能的组合直到所有节点遍历完毕。

结果

经过所有可能的遍历和回溯,我们发现最优的背包装载方案价值为49,对应的物品组合为CD。

遍历过程图示

在这里插入图片描述
bound = 45+14*(24/15)=67.4

代码

#include <iostream> // 引入标准输入输出流库
#include <stdio.h>  // 引入C标准库,提供输入输出函数
using namespace std; // 使用标准命名空间// 定义全局变量
int n; // 物品数量
double c; // 背包容量
double v[100]; // 各个物品的价值数组
double w[100]; // 各个物品的重量数组
double cw = 0.0; // 当前背包重量
double cp = 0.0; // 当前背包中物品的总价值
double bestp = 0.0; // 记录找到的最优价值
double perp[100]; // 存储物品的单位价值,用于排序
int order[100]; // 存储物品的原始索引,用于排序后恢复
int put[100]; // 标记每个物品是否被选中放入背包,1表示放入,0表示不放入// 按单位价值对物品进行排序的函数
void knapsack() {int i, j; // 循环变量int temporder = 0; // 用于交换的临时变量double temp = 0.0; // 用于交换的临时变量// 计算每个物品的单位价值并存放到数组perp中for(i = 1; i <= n; i++) {perp[i] = v[i] / w[i];}// 使用冒泡排序算法按单位价值对物品进行排序for(i = 1; i <= n - 1; i++) {for(j = i + 1; j <= n; j++) {// 如果当前物品的单位价值小于下一个物品,则交换它们的位置if(perp[i] < perp[j]) {// 交换perp数组中的元素temp = perp[i];perp[i] = perp[j];perp[j] = temp;// 交换order数组中的元素,以保持物品原来的顺序temporder = order[i];order[i] = order[j];order[j] = temporder;// 交换v数组中的元素,以保持物品价值的一致性temp = v[i];v[i] = v[j];v[j] = temp;// 交换w数组中的元素,以保持物品重量的一致性temp = w[i];w[i] = w[j];w[j] = temp;}}}
}// 回溯函数,用于搜索最优解
void backtrack(int i) {// i表示当前正在考虑的物品索引if(i > n) { // 如果已经考虑完所有物品,则结束递归bestp = cp; // 更新最优价值为当前价值return;}// 如果当前物品可以放入背包,更新背包状态并继续搜索左子树if(cw + w[i] <= c) {cw += w[i]; // 将物品重量加到当前背包重量cp += v[i]; // 将物品价值加到当前背包价值put[i] = 1; // 标记当前物品已放入背包backtrack(i + 1); // 递归搜索下一件物品// 回溯,撤销上一步操作cw -= w[i];cp -= v[i];put[i] = 0;}// 计算当前扩展节点的上界,如果上界大于当前最优价值,则继续搜索右子树double boundValue = bound(i + 1);if(boundValue > bestp) {backtrack(i + 1);}
}// 计算上界函数,用于剪枝以减少搜索空间
double bound(int i) {// 计算剩余背包容量double leftw = c - cw;double b = cp; // 当前背包的总价值// 遍历剩余物品,尝试以单位价值递减的顺序装入背包while(i <= n && w[i] <= leftw) {leftw -= w[i]; // 更新剩余容量b += v[i]; // 更新总价值i++; // 移动到下一个物品}// 如果还有剩余容量,尝试用最大单位价值的物品填充if(i <= n) {b += (v[i] / w[i]) * leftw;}return b; // 返回计算出的上界
}// 主函数,程序入口点
int main() {int i; // 循环变量// 从用户那里获取物品数量和背包容量printf("请输入物品的数量和背包的容量:");scanf("%d %lf", &n, &c);// 从用户那里获取每个物品的重量printf("请依次输入%d个物品的重量:\n", n);for(i = 1; i <= n; i++) {scanf("%lf", &w[i]);order[i] = i; // 初始化物品的原始索引}// 从用户那里获取每个物品的价值printf("请依次输入%d个物品的价值:\n", n);for(i = 1; i <= n; i++) {scanf("%lf", &v[i]);}// 调用排序函数和回溯函数knapsack();backtrack(1);// 输出最优价值和需要装入背包的物品编号printf("最优价值为:%lf\n", bestp);printf("需要装入的物品编号是:");for(i = 1; i <= n; i++) {if(put[i] == 1) {printf("%d ", order[i]);}}printf("\n"); // 输出换行符,美化输出格式return 0; // 程序正常结束
}

在这里插入图片描述

时间复杂度

因为物品只有选与不选2个决策,而总共有n个物品,所以时间复杂度为在这里插入图片描述

因为递归栈最多达到n层,而且存储所有物品的信息也只需要常数个一维数组,所以最终的空间复杂度为O(n)。

这篇关于回溯法-0/1背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1128190

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复