开源通用验证码识别OCR —— DdddOcr 源码赏析(二)

2024-09-01 19:36

本文主要是介绍开源通用验证码识别OCR —— DdddOcr 源码赏析(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • DdddOcr
  • 分类识别
    • 调用识别功能
    • classification 函数源码
    • classification 函数源码解读
      • 1. 分类功能不支持目标检测
      • 2. 转换为Image对象
      • 3. 根据模型配置调整图片尺寸和色彩模式
      • 4. 图像数据转换为浮点数据并归一化
      • 5. 图像数据预处理
      • 6. 运行模型,返回预测结果
  • 总结


前言

DdddOcr 源码赏析
上文我们读到了分类识别部分的源码,这里我们继续往下进行
在这里插入图片描述

DdddOcr

DdddOcr是开源的通用验证码识别OCR
官方传送门

分类识别

调用识别功能

image = open("example.jpg", "rb").read()
result = ocr.classification(image)
print(result)

classification 函数源码

def classification(self, img, png_fix: bool = False, probability=False):if self.det:raise TypeError("当前识别类型为目标检测")if not isinstance(img, (bytes, str, pathlib.PurePath, Image.Image)):raise TypeError("未知图片类型")if isinstance(img, bytes):image = Image.open(io.BytesIO(img))elif isinstance(img, Image.Image):image = img.copy()elif isinstance(img, str):image = base64_to_image(img)else:assert isinstance(img, pathlib.PurePath)image = Image.open(img)if not self.use_import_onnx:image = image.resize((int(image.size[0] * (64 / image.size[1])), 64), Image.ANTIALIAS).convert('L')else:if self.__resize[0] == -1:if self.__word:image = image.resize((self.__resize[1], self.__resize[1]), Image.ANTIALIAS)else:image = image.resize((int(image.size[0] * (self.__resize[1] / image.size[1])), self.__resize[1]),Image.ANTIALIAS)else:image = image.resize((self.__resize[0], self.__resize[1]), Image.ANTIALIAS)if self.__channel == 1:image = image.convert('L')else:if png_fix:image = png_rgba_black_preprocess(image)else:image = image.convert('RGB')image = np.array(image).astype(np.float32)image = np.expand_dims(image, axis=0) / 255.if not self.use_import_onnx:image = (image - 0.5) / 0.5else:if self.__channel == 1:image = (image - 0.456) / 0.224else:image = (image - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])image = image[0]image = image.transpose((2, 0, 1))ort_inputs = {'input1': np.array([image]).astype(np.float32)}ort_outs = self.__ort_session.run(None, ort_inputs)result = []last_item = 0if self.__word:for item in ort_outs[1]:result.append(self.__charset[item])else:if not self.use_import_onnx:# 概率输出仅限于使用官方模型if probability:ort_outs = ort_outs[0]ort_outs = np.exp(ort_outs) / np.sum(np.exp(ort_outs))ort_outs_sum = np.sum(ort_outs, axis=2)ort_outs_probability = np.empty_like(ort_outs)for i in range(ort_outs.shape[0]):ort_outs_probability[i] = ort_outs[i] / ort_outs_sum[i]ort_outs_probability = np.squeeze(ort_outs_probability).tolist()result = {}if len(self.__charset_range) == 0:# 返回全部result['charsets'] = self.__charsetresult['probability'] = ort_outs_probabilityelse:result['charsets'] = self.__charset_rangeprobability_result_index = []for item in self.__charset_range:if item in self.__charset:probability_result_index.append(self.__charset.index(item))else:# 未知字符probability_result_index.append(-1)probability_result = []for item in ort_outs_probability:probability_result.append([item[i] if i != -1 else -1 for i in probability_result_index ])result['probability'] = probability_resultreturn resultelse:last_item = 0argmax_result = np.squeeze(np.argmax(ort_outs[0], axis=2))for item in argmax_result:if item == last_item:continueelse:last_item = itemif item != 0:result.append(self.__charset[item])return ''.join(result)else:last_item = 0for item in ort_outs[0][0]:if item == last_item:continueelse:last_item = itemif item != 0:result.append(self.__charset[item])return ''.join(result)

classification 函数源码解读

1. 分类功能不支持目标检测

if self.det:raise TypeError("当前识别类型为目标检测")

2. 转换为Image对象

 if not isinstance(img, (bytes, str, pathlib.PurePath, Image.Image)):raise TypeError("未知图片类型")if isinstance(img, bytes):image = Image.open(io.BytesIO(img))elif isinstance(img, Image.Image):image = img.copy()elif isinstance(img, str):image = base64_to_image(img)else:assert isinstance(img, pathlib.PurePath)image = Image.open(img)

3. 根据模型配置调整图片尺寸和色彩模式

 if not self.use_import_onnx:image = image.resize((int(image.size[0] * (64 / image.size[1])), 64), Image.ANTIALIAS).convert('L')else:if self.__resize[0] == -1:if self.__word:image = image.resize((self.__resize[1], self.__resize[1]), Image.ANTIALIAS)else:image = image.resize((int(image.size[0] * (self.__resize[1] / image.size[1])), self.__resize[1]),Image.ANTIALIAS)else:image = image.resize((self.__resize[0], self.__resize[1]), Image.ANTIALIAS)if self.__channel == 1:image = image.convert('L')else:if png_fix:image = png_rgba_black_preprocess(image)else:image = image.convert('RGB')
  • 如果使用dddocr的模型,则将图像调整为高度为64,同时保持原来的宽高比,同时将图片转为灰度图
  • 如果使用自己传入的模型,则根据从charsets_path读取的charset info调整图片尺寸,之后根据charset 需要调整为灰度图片或RGB模式的图片,这里png_rgba_black_preprocess也是将图片转为RGB模式
def png_rgba_black_preprocess(img: Image):width = img.widthheight = img.heightimage = Image.new('RGB', size=(width, height), color=(255, 255, 255))image.paste(img, (0, 0), mask=img)return image

4. 图像数据转换为浮点数据并归一化

image = np.array(image).astype(np.float32)
image = np.expand_dims(image, axis=0) / 255.
  • image = np.array(image).astype(np.float32):首先,将图像从PIL图像或其他格式转换为NumPy数组,并确保数据类型为float32。这是为了后续的数学运算,特别是归一化和标准化。
  • image = np.expand_dims(image, axis=0) / 255.:然后,通过np.expand_dims在第一个维度(axis=0)上增加一个维度,这通常是为了符合某些模型输入的形状要求(例如,批处理大小)。之后,将图像数据除以255,将其归一化到[0, 1]区间内。

5. 图像数据预处理

if not self.use_import_onnx:image = (image - 0.5) / 0.5
else:if self.__channel == 1:image = (image - 0.456) / 0.224else:image = (image - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])image = image[0]image = image.transpose((2, 0, 1))

这段代码主要进行了图像数据的预处理,具体地,根据是否使用私人的onnx模型(self.use_import_onnx)以及图像的通道数(self.__channel),对图像数据image进行了不同的归一化处理。这种处理在机器学习和深度学习模型中是常见的,特别是当使用预训练的模型进行推理时,需要确保输入数据与模型训练时使用的数据具有相同的分布。

  • 如果不使用私人的ONNX模型 (self.use_import_onnx 为 False, 也就是使用官方的模型)

图像数据image会先减去0.5,然后除以0.5,实现了一个简单的归一化,将图像的像素值从[0, 255]范围缩放到[-1, 1]范围。这种归一化方式可能适用于某些特定训练的模型。

  • 如果使用私人的ONNX模型 (self.use_import_onnx 为 True)
  • 首先,根据图像的通道数self.__channel进行不同的处理。
    如果图像是单通道(self.__channel == 1),则图像数据image会先减去0.456,然后除以0.224,实现另一种归一化。这种归一化参数(0.456和0.224)是针对单通道图像(如灰度图)预训练的模型所使用的。
  • 如果图像是多通道(通常是RGB三通道),则图像数据image会先减去一个包含三个值的数组[0.485, 0.456, 0.406](这些值分别是RGB三通道的均值),然后除以另一个包含三个值的数组[0.229, 0.224, 0.225](这些值分别是RGB三通道的标准差或缩放因子)。这种归一化方式是为了将图像数据标准化到常见的分布,与许多预训练的深度学习模型(如ResNet, VGG等)训练时使用的数据分布相匹配。
  • 接着,对于多通道图像,还执行了两个额外的步骤:
  • image = image[0]:由于之前通过np.expand_dims增加了一个维度,这里通过索引[0]将其移除,恢复到原始的三维形状(高度、宽度、通道数)。
  • image = image.transpose((2, 0, 1)):最后,将图像的维度从(高度、宽度、通道数)转换为(通道数、高度、宽度)。这是因为某些模型(特别是使用PyTorch等框架训练的模型)期望输入数据的维度顺序为(通道数、高度、宽度)。

6. 运行模型,返回预测结果

ort_inputs = {'input1': np.array([image]).astype(np.float32)}
ort_outs = self.__ort_session.run(None, ort_inputs)
result = []
if self.__word:for item in ort_outs[1]:result.append(self.__charset[item])
else:if not self.use_import_onnx:# 概率输出仅限于使用官方模型if probability:ort_outs = ort_outs[0]ort_outs = np.exp(ort_outs) / np.sum(np.exp(ort_outs))ort_outs_sum = np.sum(ort_outs, axis=2)ort_outs_probability = np.empty_like(ort_outs)for i in range(ort_outs.shape[0]):ort_outs_probability[i] = ort_outs[i] / ort_outs_sum[i]ort_outs_probability = np.squeeze(ort_outs_probability).tolist()result = {}if len(self.__charset_range) == 0:# 返回全部result['charsets'] = self.__charsetresult['probability'] = ort_outs_probabilityelse:result['charsets'] = self.__charset_rangeprobability_result_index = []for item in self.__charset_range:if item in self.__charset:probability_result_index.append(self.__charset.index(item))else:# 未知字符probability_result_index.append(-1)probability_result = []for item in ort_outs_probability:probability_result.append([item[i] if i != -1 else -1 for i in probability_result_index ])result['probability'] = probability_resultreturn resultelse:last_item = 0argmax_result = np.squeeze(np.argmax(ort_outs[0], axis=2))for item in argmax_result:if item == last_item:continueelse:last_item = itemif item != 0:result.append(self.__charset[item])return ''.join(result)else:last_item = 0for item in ort_outs[0][0]:if item == last_item:continueelse:last_item = itemif item != 0:result.append(self.__charset[item])return ''.join(result)
  • 使用模型预测字符并拼接字符串,官方模型可以输出概率信息

argmax_result = np.squeeze(np.argmax(ort_outs[0], axis=2))这行代码在ort_outs[0]的第三个维度(axis=2)上应用np.argmax函数,以找到序列中每个元素最可能的字符索引。np.squeeze用于去除结果中维度为1的轴


总结

本文介绍了DdddOcr的分类识别任务的源码实现过程,主要是调整图片尺寸和色彩模式,以及图像数据的预处理,最后运行模型预测得到结果,下一篇文章中我们将继续阅读DdddOcr目标检测任务的源码实现过程,天命人,明天见!
在这里插入图片描述

这篇关于开源通用验证码识别OCR —— DdddOcr 源码赏析(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127853

相关文章

如何正确识别一台POE交换机的好坏? 选购可靠的POE交换机注意事项

《如何正确识别一台POE交换机的好坏?选购可靠的POE交换机注意事项》POE技术已经历多年发展,广泛应用于安防监控和无线覆盖等领域,需求量大,但质量参差不齐,市场上POE交换机的品牌繁多,如何正确识... 目录生产标识1. 必须包含的信息2. 劣质设备的常见问题供电标准1. 正规的 POE 标准2. 劣质设

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja

Nginx屏蔽服务器名称与版本信息方式(源码级修改)

《Nginx屏蔽服务器名称与版本信息方式(源码级修改)》本文详解如何通过源码修改Nginx1.25.4,移除Server响应头中的服务类型和版本信息,以增强安全性,需重新配置、编译、安装,升级时需重复... 目录一、背景与目的二、适用版本三、操作步骤修改源码文件四、后续操作提示五、注意事项六、总结一、背景与

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.