[Python图论]在用图nx.shortest_path求解最短路径时,节点之间有多条边edge,会如何处理?

本文主要是介绍[Python图论]在用图nx.shortest_path求解最短路径时,节点之间有多条边edge,会如何处理?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问: 在使用图求最短路径时,如果节点之间有多条路径,shortest_route = nx.shortest_path(G, source=start_node, target=end_node, weight='length')会如何处理,会自动选择最短那条吗?

# 输出图G各节点之间有多少条边edge,并给出其长度
Edges between 103928 and 25508583:共2条
Edge: 103928 -> 25508583, Key: 0, Length: 77.277
Edge: 103928 -> 25508583, Key: 1, Length: 112.16900000000001
Edges between 26630792 and 5521427550:共2条
Edge: 26630792 -> 5521427550, Key: 0, Length: 85.091
Edge: 26630792 -> 5521427550, Key: 1, Length: 88.07600000000001
Edges between 107876 and 107873:共2条
Edge: 107876 -> 107873, Key: 0, Length: 83.102
Edge: 107876 -> 107873, Key: 1, Length: 186.669

答:是的,nx.shortest_path 会自动选择权重最小的那条路径。

当你在 NetworkX 中使用 nx.shortest_path(G, source=start_node, target=end_node, weight='length') 时,它会根据你指定的权重(在这个例子中是 'length')找到源节点和目标节点之间权重最小的路径。

对于节点之间有多条路径的情况,NetworkX 会如下处理:

  • 如果两个节点之间有多条路径,例如 (u, v),NetworkX 会选择所有可能的路径,并根据你指定的权重属性(在这个例子中是 length)找到最小权重的路径。
  • 在你的例子中,每一对节点之间都有两条路径。NetworkX 会比较这两条路径的 length 属性,并选择长度最短的那条路径作为该节点对之间的最短路径。
  • 这个过程会在整个图上进行,直到找到从起点到终点的全局最短路径。

具体示例

以你的数据为例:

  1. 节点 103928 -> 25508583:

    • 第一条路径长度:77.277
    • 第二条路径长度:112.169
    • NetworkX 选择:77.277 长度的路径(Key: 0)
  2. 节点 26630792 -> 5521427550:

    • 第一条路径长度:85.091
    • 第二条路径长度:88.076
    • NetworkX 选择:85.091 长度的路径(Key: 0)
  3. 节点 107876 -> 107873:

    • 第一条路径长度:83.102
    • 第二条路径长度:186.669
    • NetworkX 选择:83.102 长度的路径(Key: 0)
  4. 节点 11767210 -> 12026764:

    • 第一条路径长度:219.545
    • 第二条路径长度:95.666
    • NetworkX 选择:95.666 长度的路径(Key: 1)

总结

  • NetworkX 的 shortest_path 函数会自动为你选择每对节点之间权重最小的路径。
  • 因此,你不需要手动指定哪条路径是最短的,NetworkX 会基于权重(如 length)自动做出选择。

输出图内各节点之间的边及其长度 代码:

# 输出图内各节点之间的边及其长度import networkx as nx# Get all the nodes in the graph
nodes = G.nodes()# Iterate over all pairs of nodes
for u in nodes:for v in nodes:# Skip if u and v are the same nodeif u == v:continue# Get the edges between u and vedges = G.get_edge_data(u, v)# If there are no edges between u and v, skip to the next pair of nodesif edges is None:continueedges_count = len(edges.items())if edges_count >1:# Print the edges and their lengthsprint(f"Edges between {u} and {v}:共{edges_count}条")for key, data in edges.items():print(f"Edge: {u} -> {v}, Key: {key}, Length: {data['length']}")

 

这篇关于[Python图论]在用图nx.shortest_path求解最短路径时,节点之间有多条边edge,会如何处理?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1127179

相关文章

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报

python之uv使用详解

《python之uv使用详解》文章介绍uv在Ubuntu上用于Python项目管理,涵盖安装、初始化、依赖管理、运行调试及Docker应用,强调CI中使用--locked确保依赖一致性... 目录安装与更新standalonepip 安装创建php以及初始化项目依赖管理uv run直接在命令行运行pytho

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境