PCIe Gen4 ltssm协商过程

2024-09-01 13:28
文章标签 过程 pcie 协商 gen4 ltssm

本文主要是介绍PCIe Gen4 ltssm协商过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本章节我们以gen4 Endpoint为例介绍PCIe ltssm(链路状态机)协商过程。

正常PCIe设备链路状态跳变为   detect-->polling-->configuration-->L0(gen1)-->recovery-->L0(gen3)-->recovery-->L0(gen4)。

需要注意的是在进入configuration状态之前,因为物理层还未收到有效数据(例如在PIPE接口的时钟pclk稳定之前),ltssm会在detect和polling之间反复跳转。

图片

链路状态机首次进入L0时是2.5 GT/s速率,接着从L0进入recovery(步骤4)状态,在recovery状态将速率切换到8 GT/s,然后再回到L0(步骤5),接着从gen3 L0跳转到recovery状态(步骤6),在recovery状态将速率切换到16 GT/s,然后再回到gen4 L0(步骤7),至此链路协商已完成,后续使用DLLP完成credit初始化后就能发送TLP了。    

1.Detect  

detect目的是检测对端设备是否存在。

图片

1.1.Detect.Quiet  

Detect.Quiet 状态是上电、复位(Function Level Reset 除外)、power‐up event之后进入的初始状态。

设备发送侧逻辑Transmitter 处于 Electrical Idle state.

Detect.Quiet 状态下,默认使用 2.5 GT/s 的数据传输速率。

物理层状态信号LinkUp = 0通知数据链路层当前链路无法正常工作

之前已更新的均衡(equalization )状态会被清零

l何时进入Detect.Active?

在Detect.Quiet状态超过12ms或者任意lane退出了Electrical Idle,则会进入Detect.Active

l如何进入Detect.Quiet 状态?

ltssm可以从Disabed、Loopback、L2、Polling、Configuration 或者 Recovery 状态进入 Detect.Quiet 状态。

1.2.Detect.Active  

只有从Detect.Quiet才能进入Detect.Active。在Detect.Active状态,使用Receiver Detection机制检测是否存在对接的lane。发送侧通过改变共模电压检测对端是否存在对接设备,如果链路如果存在对接设备,则电压变化较慢,反之,则电压变化很快。

  • 进入 “Detect.Quiet”

如果任意lane均没有检测到对端设备,则等待12ms后,进入Detect.Quiet

  • 进入“Polling State”

如果在所有lane均检测到对端设备,则进入polling状态。

  • 只有部分lane检测到对端设备

    • 等待12ms,再执行一次Receiver Detection,如果检测结果与首次检测结果相同则进入polling状态,否则进入Detect.Quiet

              

图片

          

2.Polling  

在此状态,端口TX逻辑发送TS1 和 TS2 Ordered Sets(2.5 GT/s)、RX逻辑接收TS1 和 TS2 Ordered Sets(2.5 GT/s)

通过接收到的 TS1 和 TS2 序列,完成如下操作:

l完成bit lock、

l完成Symbol lock 或者 Block Lock

l完成Lane polarity配置

Gen4协商过程在此状态会依次经过Polling.Active和Polling.Configuration。在Polling.Active阶段,完成bit lock、Symbol lock,在Polling.Configuration阶段完成Polarity Inversion。    

图片

          

3.Configuration  

发送逻辑 TX 和 接收逻辑 以在 2.5 GT/s 的速度交换 TS1 和 TS2 Ordered Sets,完成如下功能

— Determine Link width

— Assign Lane numbers

— Optionally check for Lane reversal and correct it

— Deskew Lane‐to‐Lane timing differences

Endpoint设备在gen4链路协商过程中在Configuration状态经过的子状态分别是CFG_LINKWIDTH_START、CFG_LINKWIDTH_ACCEPT、CFG_LANENUM_WAIT、CFG_LANENUM_ACCEPT、CFG_COMPLETE和CFG_IDLE。

因为有些PCIe port支持bifucation,可以同时对接多个PCIe设备,因此需要在CFG_LINKWIDTH_START和CFG_LINKWIDTH_ACCEPT阶段确认Link width,而很多PCIe设备支持lane reversal并且支持部分lane对接设备(例如:x16lane的PCIe设备可以使用lane4~lane7 对接一个x4的PCIe设备)因此需要在CFG_LANENUM_WAIT和CFG_LINKWIDTH_START阶段确认有效的lane number。PCIe设备在CFG_COMPLETE阶段通过TS2确认已协商好的 Link width和Lane numbers并且完成lane deskew,最后在CFG_IDLE阶段发送Idle data,然后进入L0。

图片

          

4.Recovery  

在recovery状态可以实现如下功能:

lchange the data rate

n例如从2.5 GT/s切换到8GT/s、从8GT/s切换到16 GT/s

lre-establish bit lock, Symbol lock or Block alignment

lLane-to-Lane de-skew

lEqualization Complete

从L0进入Loopback、Disabled和Hot Reset状态都需要先进入Recovery

例如从L0开始重新协商有效lane数量,则首先进入recovery再进入Configuration

8GT/s及其以上速率,均衡(Equalization )是非常重要的步骤,能够有效保证高速通信过程中的信号质量,均衡的协商在Recovery.Equalization状态完成。

Recovery.speed状态用于完成速率切换

Recovery.RcvrLock阶段完成bit lock、完成Symbol lock 或者 Block Lock

Recovery.Rcvrcfg: 通过TS2 协商speed change or link width change、指定均衡阶段需要使用的init Preset  

图片

    

5.L0  

L0正常工作状态,可以发送TLP

这篇关于PCIe Gen4 ltssm协商过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127063

相关文章

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

k8s中实现mysql主备过程详解

《k8s中实现mysql主备过程详解》文章讲解了在K8s中使用StatefulSet部署MySQL主备架构,包含NFS安装、storageClass配置、MySQL部署及同步检查步骤,确保主备数据一致... 目录一、k8s中实现mysql主备1.1 环境信息1.2 部署nfs-provisioner1.2.

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

MySQL使用EXISTS检查记录是否存在的详细过程

《MySQL使用EXISTS检查记录是否存在的详细过程》EXISTS是SQL中用于检查子查询是否返回至少一条记录的运算符,它通常用于测试是否存在满足特定条件的记录,从而在主查询中进行相应操作,本文给大... 目录基本语法示例数据库和表结构1. 使用 EXISTS 在 SELECT 语句中2. 使用 EXIS

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本